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Abstract 

The Six Nations of The Grand River is the largest First Nations reserve in Canada with 

over 27,000 members, and approximately 12,000 living on the reserve (Indigenous and Northern 

Affairs Canada, 2020). The Six Nations is located near Brantford, Ontario and many residents 

face accessibility issues for safe drinking water, with little effort put in by our government to 

assist them. In this study, we aimed to investigate potential landscape and geological factors that 

could be related to water contamination of Escherichia coli for sampled groundwater wells in 

2003, 2004, and 2018, as well as investigate areas of significant clustering through spatial 

analysis in the Six Nations reserve. We used generalized linear mixed modelling to investigate 

whether or not potential landscape and geologic predictor variables such as slope, depth, static 

water level, land coverage, stream proximity and order, and sub-watershed had any significant 

relationships with the presence or absence of E.coli contamination. Although no results show 

that relationships are occurring with these predictor variables and contamination, spatial 

autocorrelation analysis and hotspot analysis show that there is a highly significant amount of 

clustering occurring with wells that are contaminated, particularly at 6th Line and Tuscarora 

Road. Too few samples exist on record to accurately analyze the effect of landscape and geologic 

predictor variables on well water contamination. Overall, spatial results indicate potential areas 

of concern for the community and highlight the need for further research to be conducted within 

the Six Nations in order to identify threats to drinking water accessibility. 

  

 

 

 



Introduction  

Clean, drinkable freshwater is considered an essential human right for all Canadian 

citizens according to Canada’s constitution act of 1982 (Legislative services, 2020). Although 

Canada has 7% of the world’s freshwater resources (ECCC, 2020), not all Canadians have access 

to this basic human right. Accessibility to potable water in Indigenous communities across 

Canada is a concerning topic (Lucier et al., 2020), with over 70% of all First Nations 

communities being under Drinking Water Advisories (DWA) or Boil Water Advisories (BWA; 

Galway, 2016) between 2003 and 2013. DWAs and BWAs are put in place for communities with 

drinking water contamination, including harmful substances and organisms such as mercury and 

Escherichia coli. The government of Canada states that drinking water should have no counts of 

E.coli per 100 ml of water, and no more than 0.001 mg of mercury per litre of water (ECCC, 

2020). If contaminants such as these are present, a BWA may be advised, meaning that 

individuals have to boil their water for at least one minute before consuming to prevent potential 

health risks. 

The Six Nations of The Grand River is the largest First Nations reserve in Canada located 

near the city of Brantford, Ontario, within the Grand River Watershed (Figure 1). With 

approximately 12,000 community members living on the reserve (Stats Canada, 1996), many 

residents of the Six Nations have lived with BWA’s on and off for many years due to 

inaccessibility of clean drinking water caused by well water contamination (Burnside, 2005; 

Lucier et al., 2020). Even though accessibility to clean drinking water is a human right, the 

Canadian government has provided little effort to assist this community. Fresh water stations 

have recently been implemented such that community members may fill up on water for use in 



their homes, however, this does not fix the issue of contamination in community member’s wells 

within the reserve (Burnside, 2005).  

There is little understanding as to what factors may be contributing to well water 

contamination within the Six Nations. Contamination of groundwater in wells may occur through 

various environmental factors, and in this study, we aimed to analyze previously sampled well 

data taken within the Six Nations of The Grand River in 2003, 2004, and 2018 to investigate if 

surface and subsurface properties are significant predictors of well water contamination. 

Landscape factors such as land cover, soil substrate type, slope, and stream proximity and order 

are important surface features that we predicted to have a potential effect on well contamination. 

Subsurface properties were also predicted to have an effect, as well contamination may also be 

influenced by geologic factors such as depth to bedrock, static water level, and elevation (ECCC, 

2019). It is important to investigate all of these potential predictors of contamination, as well as 

spatially analyze instances of well contamination, as results of this study could inform the Six 

Nations community of any underlying factors or locations that may threaten the safety of their 

drinking water. 

Methods  

Concept Map 

 A concept map of methods was created for this investigation, and methods were split up 

into two parts (Figure 5). The first part involved the use, processing, and formatting of various 

datasets, where the second part made use of various forms of spatial and non-spatial analyses to 

understand regions of interest, as well as what geological and surficial predictor variables may be 

affecting contaminated wells. 

Data  



 We utilized multiple sources of data in this project, with the main sets of sampled well 

data from 2003, 2004 (Burnside, 2005), and 2018 (Global water futures, unpublished data). 

These datasets (Table 1) are shapefiles containing locations of sampled wells, cisterns, and 

faucets that were tested for multiple contaminants including E. coli, total coliforms, and mercury. 

The 2003/2004 dataset (Figure 2) has information on E. coli, location, decade drilled, type of 

well, and estimated depth, with 119 wells sampled in 2004 and 57 wells sampled in 2003. The 

2018 dataset (Figure 3) contains the same information along with additional well and survey 

information such as estimated age, ownership, and physical-chemical parameters measured on-

site. It should also be noted that 2018 was the only year that mercury was sampled, with 48 

samples taken. Due to the lack of sufficient mercury samples for analysis, this study focuses on 

E.coli contamination. Since both geological and surficial properties were investigated in this 

project (Figure 4), additional data was accessed and used alongside the surveyed well data from 

2003, 2004, and 2018. It was decided that two shapefiles would be developed in this project, one 

layer for geological (subsurface) properties (Table 2), and one for landscape (surficial) properties 

(Table 3).  

The subsurface shapefile was composed of information obtained from overlapping 

historical well records (Table 1) found in the Water Well Information Systems Database (WWIS; 

Ministry of Environment, Conservation & Parks, 2019), which included information on static 

water level, depth to bedrock, depth of well, date drilled, elevation, and slope (Table 3). This is 

an important database, as it has records of all legally constructed wells that were bored or drilled 

by contractors and drilling companies between the 1940s and the early 2000s for the Six Nations 

reserve. All of the hydrogeological features that are in each historical record are important 

properties to consider as potential predictors of E.coli contamination. Due to the inaccurate 



nature of historical WWIS records, the subsurface shapefile is a subset of all sampled wells since 

only accurately overlapping information was included for analysis. Elevation and slope are two 

equally important factors that can help identify the direction of water flow both below and above 

the surface, which helps to identify any unusual patterns caused by potential contaminants in 

water sources. Well depth must also be accounted for, since it is generally considered that the 

deeper the well, the safer it is for drinking. This is because contaminants leaching from the 

surface become more filtered out as depth increases (ECCC, 2019). This means that patterns of 

shallower well depths may give us an understanding as to how much effort was put into drilling 

the well, and patterns in contamination at specific depths. Static water level, on the other hand, 

generally identifies where the water table is for wells that are in unconfined aquifers (ECCC, 

2019). This ties perfectly into the last important property investigated, which is the depth to 

bedrock. This property can tell us whether or not the well reached bedrock, which can then be 

used to assume whether or not a confined aquifer is being used for each well. The safest 

drinkable water sources are from confined aquifers that break through impermeable bedrock, as 

this impermeable layer protects confined water sources from the introduction of contaminants 

(ECCC, 2020). Unconfined aquifers may contain drinkable water, however they are more at risk 

of becoming contaminated, as they are fed by water that can come from runoff or subsurface 

flow that may contain contaminants (ECCC, 2019). 

There are multiple potential predictors that we thought may be linked to contamination 

from the surface that was included in the surface shapefile. The first predictor variable we 

investigated was watercourse. We were interested in stream order and proximity because we 

noticed that some wells that were contaminated were close to streams. Another layer of interest 

is the sub-watershed that each well lies within. There are three different sub-watersheds that go 



through the Six Nations, and different paths of water may bring in different contaminants into 

wells. It is also important to identify if different watersheds have different proportions of 

contamination, as this can give insight as to what watersheds may be bringing in contaminants. 

The Grand River Conservation Authority (MacVeigh, Zammit & Ivey, 2016) has stated that the 

Six Nations reserve is made up primarily of clay plains with low permeability (MacVeigh, 

Zammit & Ivey, 2016). When precipitation occurs, the impermeable clay substrate leads to less 

areas of infiltration and more surface runoff into land, culverts, streams, and rivers. Runoff may 

be reduced in forested areas, and exacerbated in urban and agricultural areas (MacVeigh, 

Zammit & Ivey, 2016). Furthermore, Ontario government states that regardless of the source, 

farming areas may be much more susceptible to ground water contamination if contaminants 

enter the ground (ECCC, 2019). Considering the Six Nations has a large amount of agricultural 

land cover, these factors are important to account for, as wells could be acquiring more runoff in 

some regions of the Six Nations compared to others.  

GIS & Data Processing 

 A detailed flow chart was created to show the process used in ESRI® ArcGIS Pro to 

develop and format the surface and subsurface shapefiles (Figure 6). Firstly, the 2003 and 2004 

datasets had to be separated from each other in order to create two shapefiles with wells surveyed 

from each year. This allowed for the 119 samples in 2004 to be separate from the 57 samples 

from 2003. Next, the shapefiles from these years were joined with the 2018 data to get one 

shapefile with sampled data from all years. This newly created shapefile with 310 entries was 

then copied, such that it may be used as the basis of both the surface and subsurface shapefiles 

that will be analyzed and created. 



 The subsurface shapefile was made from a copy of sampled wells from all years by 

identifying overlapping wells from the WWIS layer that have historical well information. By 

putting a 100m buffer around each well from historical records, the intersect tool was used to 

identify potential historical wells that are the same as sampled wells from 2003, 2004, and 2018. 

This was performed because the WWIS layer with historical well data has low spatial accuracy, 

as locations were based off of drawings of well locations made between the 1940s to early 

2000s. By using 100m buffers and the intersect tool, we can potentially identify which historical 

wells were sampled. Those that overlap within 100m may be considered to be the same well and 

have the historical information spatially joined to the overlapping wells. If multiple records or 

surveyed wells lie within the buffer region, dates between surveyed wells and WWIS records 

were manually compared to identify if a match occurred. If a match could not be proven through 

manual identification, overlapping sampled wells were omitted from the new shapefile. This 

created a subset of surveyed wells that had geologic and Z-axis information. One final step was 

performed, where the ‘Summarize Z Data’ tool was used in ArcGIS Pro to incorporate the mean 

elevation and slope in a 10m area around each well using a LiDAR derived DTM provided by 

the Ontario Ministry of Natural Resources and Forestry (OMNRF, 2020).  

 The surface shapefile was created using a copy of the all sampled years shapefile to 

incorporate multiple different watershed and landscape properties of each well into the result. 

Firstly, the Nearby tool was used in ArcGIS Pro with the Ontario Hydrocourse Network (OHN; 

OMNRF, 2010) to summarize the distance (in meters) from each well to the closest stream, river, 

creek, or culvert. The Join tool was then used to join the Strahler order of the closest watercourse 

to each well. This resulted in two new columns that identify the closest watercourse and their 

Strahler order for each sampled well. Next, a spatial join was used between the surveyed well 



shapefile and a sub-watershed polygon supplied by the GRCA (MacVeigh, Zammit & Ivey, 

2016), summarizing each Subwatershed within the Six Nations that each well lies within. This 

created a column that lists each sampled well as “McKenzie Creek”, “Boston Creek”, or “Lower 

Grand River” watershed. To incorporate land use information around each well, a 10m buffer 

was created around the sampled wells shapefile and the Summarize Within By Majority tool was 

used to summarize land usage in a 10m area around each well based on the Southern Ontario 

Land Resource Information System (SOLRIS) 3.0 (SOLRIS 3.0; OMNRF, 2019). SOLRIS 3.0 

uses the OMNRF's Ecological Land Classification for southern Ontario based off of land 

coverage classification by Lee et al, (1998). Land coverage types were grouped into 

“Agricultural”, “Forest”, “Urban/Road” land coverage types, which were incorporated into a 

final column in the new surface shapefile with the most common land use type in a 10m radius 

for each surveyed well. 

Analysis Using Generalized Linear Mixed Models and Contingency Tables 

We used the statistical program JMP® SAS to format the surface and subsurface 

shapefiles, as well as conduct non-spatial analysis. Firstly, each shapefile was translated into a 

spreadsheet format, and a column was created to identify wells with presence and absence of a 

contamination. Based on E.coli concentrations, any sampled wells with concentrations that were 

greater or equal to 1 were considered contaminated and marked as “Y” in the new column. Those 

that had concentrations of 0 when sampled were marked as “N” in the new column. A well ID 

column was also created for wells that are the same, such as the 57 wells in 2003 that were 

sampled once again in 2004. This is an important step for generalized linear mixed modelling, as 

resampled wells can create random variation and need to be accounted for. 



Generalized Linear Mixed Modelling of the surface and subsurface data occurred through 

a JMP add-in (Dong, 2020), with properties from Table 2 and Table 3 used as predictor 

variables, and presence/absence of contamination as the response variable. This method was used 

over other types of linear regression, as resampled wells are an area of random variability, and 

can be accounted for by this method. Furthermore, this method was used because it allows for 

both numerical and categorical predictor variables, both of which were included in this 

investigation. We used the Well ID column as the random variable for both analyses of the 

surface and subsurface data and used scatterplot matrices to compare predictor variables to each 

other to ensure there were no patterns or correlations between predictors before executing the 

analysis. If any predictor variables were correlated with each other, one of the correlated 

predictors were excluded from the analysis. 

Contingency tables were also performed in JMP SAS using the Fit Y by X tool. 

Contingency tables were used to look at differences in presence and absence of contamination 

for two potential predictor variables; “Decade Drilled” and “Road”. These two predictors were 

reformatted to be grouped into an “other” category if there were less than five observations for 

each road name or decade. A Chi Square analysis was then performed with each contingency 

table to test differences between proportions of contaminated and uncontaminated wells for all 

roads in the Six Nations, and the decade that wells were drilled. It should be noted that “Decade 

Drilled” is from the subsurface shapefile, where “Road” is from the surface shapefile. This 

means that there are much fewer observations for analysis of Decade Drilled compared to road. 

Spatial Autocorrelation and Hotspot Analysis 

Spatial analysis was performed for the surface shapefile (Figure 8) to investigate if spatial 

autocorrelation and clustering are occurring for surveyed wells based on presence and absence of 



E.coli contamination. Firstly, we used the Global Moran’s I tool in ArcGIS pro to look at 

dispersion or clustering of contaminated and uncontaminated wells. Moran’s I analysis looks at 

location of datapoints and tries to evaluate if datapoints of similar type (such as contaminated or 

uncontaminated) are more or less closely related to each other by distance. Moran’s I evaluates 

whether the pattern expressed is clustered, dispersed, or random. We used this tool to investigate 

if the distribution of contaminated and uncontaminated wells (Figure 8) shows significant 

clustering. If significance is detected, this suggests that a pattern of contamination is occurring 

within the Six Nations that is not due to chance.  

Getis-Ord Gi* was the second spatial analysis performed with the surface dataset. Also 

known as the Optimized Hot Spot Analysis tool in ArcGIS Pro, this analysis is similar to spatial 

autocorrelation, but instead creates a series of polygons that identify areas with high densities of 

incident data (such as presence of contamination). This tool also assesses significance of incident 

density for areas with 95-99% confidence. The output returns multiple polygons in a fishnet or 

hexagonal grid pattern that make up the area of interest (Six Nations Boundary), and categorizes 

them as significant hotspots (densely contaminated), or significant cold spots (uncontaminated). 

We used this analysis with a 2km hexagonal grid pattern, rather than the square grid to reduce 

sampling bias of points and ensure that each grid had at least one observation. This analysis was 

chosen as the result may help identify environmental factors that could influence contamination 

within grids of significant clustering. 

Results 

Generalized Linear Mixed Models & Chi Square Analysis 

Results from generalized linear mixed modelling found no significant results for both 

surface and subsurface shapefiles (Figure 9). Similarly, Chi square analysis through contingency 



tables did not find any significant results either for both Roads or Decade Drilled (Table 4). Bar 

graphs were created to display differences between contaminated and uncontaminated 

proportions of wells for both decade drilled and roads (Figures 10 & 11). Figure 10 shows all 

decades had more uncontaminated wells than contaminated, except for the 50s with no 

uncontaminated wells sampled, and only one contaminated well. From 1970s to 1990s, 

contamination seems to increase, until the 2000s. Figure 11 shows the 13 most surveyed roads, 

where the remaining roads with less than 5 observations were grouped into “other”. All roads 

had more uncontaminated wells than contaminated, other than Tuscarora road with 11 

contaminated wells. Both Tuscarora and 6th line interestingly seemed to have the highest number 

of contaminated wells. 

Spatial Autocorrelation and Hotspot Analysis 

Spatial autocorrelation results gave a Moran’s I value of 0.5687, a Z-score of 6.75, and a 

significant P value that was less than 0.001. The results showed that out of all sampled wells, 

there is a significant level of clustering occurring between contaminated and uncontaminated 

wells. Hot spot analysis highlighted an ~11km2 area within the reserve that had significant 

hotspots of contaminated wells with a 99% confidence level (Figure 12). All contaminated and 

uncontaminated points were further mapped out in this significant region of contaminated 

clustering, which seemed to occur around the intersection of Tuscarora Road and 6th Line (Figure 

13).  

Discussion  

  For the generalized linear mixed models, no results were significant, meaning that none 

of the potential predictor variables are proven to be good estimators of E.coli contamination. 

Starting with the Subsurface shapefile, not all predictor variables could be compared due to 



correlations with each other. Elevation and slope were heavily correlated to each other, meaning 

one had to be excluded (in this case, elevation). Depth and static water level were also heavily 

correlated to each other, meaning that one had to be excluded (static water level). There were 

other strange patterns in predictor variable data that may be related to the insignificant results 

found. For example, Strahler order needed to be grouped due to lack of observations for stream 

orders greater than 3. Because of this, Strahler order was grouped as 1, 2, and greater than or 

equal to 3. Land coverage is another good example, as most wells were in areas of agriculture or 

urban/road coverage which left very few observations with forested land coverage. Based on 

these patterns, it is likely that a larger sample size is needed to accurately identify if any of these 

predictors have an effect on well contamination. 

Moran’s I results indicate that that the spatial distribution of contaminated and un-

contaminated wells in the dataset are more spatially clustered than would be expected if 

underlying spatial processes were random (less than 1% likelihood). This means there is some 

external factor that is likely influencing well contamination. Hotspot analysis reveals an area of 

significant contamination clustering in the hexagonal grid with 99% confidence (Figure 12), 

located around the intersection of Tuscarora road and 6th line. This highly significant hotspot 

suggests that there may be an environmental factor near that is influencing contamination in this 

area, which agrees with results seen in figure 11. Both figure 11, as well as Table 4 show that 

Tuscarora road and 6th line have the highest contamination counts compared to other roads, 

which further supports our predictions that this area is key to understanding what may be 

influencing well contamination.  

We decided to further investigate environmental variables in the significant hotspot that 

may be related to occurrences of contamination (Figure 14). Although depth was already 



analyzed through generalized linear mixed modelling, it is important to note that most wells 

within the Six Nations are very shallow. The shallowest well is less than 5m deep, where the 

deepest is ~30m. We investigated well depth via visual analysis (Figure 14) and noticed that 

within the area of clustering, many wells that were less than 15 meters deep seemed to be 

contaminated. Unfortunately, the sample size in this dataset is too small to definitively prove if 

depth may influence contamination, and furthermore there are still contaminations occurring in 

wells that are up to 30 meters deep. Depth may be an area for future research to focus on, as a 

higher sample size may be able to shed light on specific depths that contamination occur at. 

Another environmental variable further looked at was watercourse. It was noticed that 

both the Grand River and McKenzie creek run through the significant hotspots (Figure 15), and 

furthermore, the wastewater lagoon runs very close to McKenzie Creek a few km upstream on 

this region. There are not enough sampled wells in this area to suggest that either of these may be 

a point source, however the regions of the Grand River and McKenzie creek that run through the 

hotspot may be key for identifying contamination in future research. 

Conclusion 

In summary, this study investigated potential effects of landscape and geological features 

on the presence and absence of E.coli contamination in sampled wells within the Six Nations, as 

well as spatial autocorrelation and clustering of contamination. We found that no predictor 

variables were found to influence presence-absence of well water E. coli contamination due to 

the small sample size, however we identified that significant clustering of contaminated wells is 

occurring around the intersection of Tuscarora Rd and 6th Line. We suggest future research 

focus on sampling more wells within the reserve to gather more information on date, depth, and 

whether or not bedrock was reached, as well as investigate stretches of the Grand River and 



McKenzie Creek that run through the significant hotspot. These factors may help to reveal 

potential environmental variables that could have an effect on contamination, and these future 

results could inform the Six Nations community of any underlying factors that may threaten the 

safety of their drinking water. 
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Table 1: Primary well data used for analysis. 

DATASET DETAILS SOURCE 

2003/2004 

Dataset 

Sampled wells for E. coli and total coliform, includes 

location data, date drilled, cistern or well, and depth in 

meters. 119 Records in total, 57 from 2003 

Neegan Burnside Engineering 

and Environmental Ltd. 

Hydrogeological study (2005) 

2018 Dataset 132 samples of E.coli contamination, address, type of well, 

location, owner, and other physical-chemical data. 

48 of these samples looked for mercury contamination. 

Global Water Futures 

Ecosystem Health Sub-team 

(2018; unpublished data) 

Water Well 

Information 

Systems (WWIS) 

Database 

Historical well records shapefile with geological and well 

information, date drilled, and Z-axis information such as 

depth, depth to bedrock, static water level, whether bedrock 

was reached or not. Older well records have inaccurate 

coordinates with locations based off of drawings. 

WWIS - Ministry of 

Environment, Conservation & 

Parks (2019) 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 2: Geospatial data used to create subsurface shapefile. 

 

CHARACTERISTIC 
(PREDICTOR VARIABLE) 

DESCRIPTION SOURCE 

Depth Depth of well from surface in meters. Well Water Information System 

Database (WWIS) - Environment and 

Energy Ontario 

Static Water Level Height of water from base of well (m) when not 

pumping, Approximate depth of water table in 

unconfined aquifer. 

WWIS - Environment and Energy 

Ontario 

Depth to Bedrock Depth (m) from ground surface to bedrock (top 

of confined aquifer). If values are 0, bedrock 

was not reached and the well uses water from 

unconfined aquifer. 

WWIS - Environment and Energy 

Ontario 

Was Bedrock 

Reached? 

Yes (Y) or No (N) as to whether well was dug 

below bedrock.  

Derived from WWIS - Environment 

and Energy Ontario 

Date Drilled Day/Month/Year that well was finished. Values 

range from 1950s-2000s. 

WWIS - Environment and Energy 

Ontario 

Elevation Mean elevation (m.a.s.l) in a 10m area around 

each well. 

LiDAR Derived Digital Terrain Model 

(DTM) - Ontario Ministry of Natural 

Resources and Forestry (OMNRF) 

Slope Mean slope in a 10m area around each well. Derived from LiDAR DTM using 

ArcGIS Pro - OMNRF 



 

 

Table 3: Geospatial data used to create surface shapefile. 

 
 

 

 

 

 

 

 

CHARACTERISTIC 
(PREDICTOR VARIABLE) 

DESCRIPTION SOURCE 

Stream Order 

(Strahler) 

Strahler order of closest stream, river, culvert, 

etc. Grouped into orders 1, 2, or ≥ 3. 

Ontario Hydro Network (OHN) 

Database - OMNRF 

Proximity to Closest 

Stream 

Distance in meters to closest stream, river, or 

culvert. 

 Derived from (OHN) Watercourse – 

OMNRF Using ArcGIS Pro 

Land Coverage Primary land coverage in 10m area around well. 

Land coverage types are grouped into “Forest”, 

“Agriculture”, “Urban/Road”. 

Southern Ontario Land Resource 

Information System (SOLRIS) Version 

3.0 - OMNRF  

Subwatershed  Subwatershed that well lies within. Grouped as 

McKenzie Creek, Boston Creek, and Lower 

Grand River Subwatersheds. 

Grand River Conservation Authority 

(GCRA) 

Road Name Name of road that the property is on for each 

sampled well. 

Derived from sampled well data of all 

years (2003, 2004, 2018). 



Table 4: Proportion of Contaminated and Uncontaminated Wells by Road. 

Count Contaminated Uncontaminated Total 

% Total 

X2 Value 

1st Line 14 6 20 

4.52 1.94 6.45 

0.0104 0.0267  

2nd Line 20 9 29 

6.45 2.90 9.35 

0.0356 0.0911  

3rd Line 23 5 28 

7.42 1.61 9.03 

0.4055 1.0395  

4th Line 21 9 30 

6.77 2.90 9.68 

0.0156 0.0400  

5th Line 

 

16 3 19 

5.16 0.97 6.13 

0.397 1.02  

6th Line 27 11 38 

8.7 3.54 12 

0.004 0.010  

Cayuga Road 13 7 20 

4.19 2.25 6.44 

0.133 0.34  

Chiefswood Road 19 2 21 

6.1 0.64 6.75 

1.003 2.57  

Mohawk Road 7 3 10 

2.25 0.967 3.2 

0.005 0.013  

Onondaga Road 14 9 23 

4.51 2.90 7.4 

0.39 1.00  

Other 7 2 9 

2.25 0.645 2.9 

0.042 0.109  

River Range Road 15 6 21 

4.8 1.9 6.7 

0.00075 0.0019  

Seneca Road 11 3 14 

3.5 0.96 4.5 

0.086 0.219  

Town Line 9 1 10 



2.90 0.322 3.22 

0.45 1.16  

Tuscarora Road 7 11 14 

2.25 3.54 5.8 

2.73 7.00  

Total 223 87 310 

71.94 28.06 100 

Prob>ChiSq 0.1141 

 

 

 
Figure 1. Six Nations of The Grand River First Nations Reserve, located in Southern Ontario. 



 
Figure 2. Sampled well locations for E.coli contamination in 2003 and 2004. Dataset from 

Neegan Burnside Engineering and Environmental Ltd. Hydrogeological study (Burnside, 2005) 

 



 
Figure 3: Sampled well locations by Global Water Futures Ecosystem Health Sub-team in 2018. 

(Makhdoom et al., 2018) 

 

 

 



 
Figure 4: Concept map of potential environmental factors that may lead to well water 

contamination. Well contamination is split into two properties, (1) geological (subsurface) 

properties, and (2) surficial (landscape) properties. 

 

 
Figure 5: Flow chart of methods used to investigate environmental predictors and presence of 

E.coli contamination in wells. Part (1) involves the creation of two separate shapefiles (surface 

properties, and subsurface properties), and Part (2) involves the spatial and non-spatial analysis. 

Generalized linear mixed models and contingency tables were used for non-spatial analyses of 

both shapefiles, where spatial analysis was used for only the subsurface shapefile. 



 

 
 

Figure 6:  GIS processing methods used to create surface and subsurface shapefiles used in analysis. 

 

 



 
Figure 7: Process used to create subsurface shapefile. A series of 100m buffers were places around each historical well record from 

the WWIS dataset. Surveyed wells from 2003, 2004, and 2018 that lied within buffers were considered to be the same well as those 

from historical records. If multiple records or surveyed wells lied within buffer, dates were compared to identify if a match occurred. 

If a match could not be proven, overlapping sampled wells were omitted from the new shapefile. 

 

 

 

 

 

 



 

 
Figure 8: Presence and absence of E.coli contamination in sampled wells from 2003, 2004, and 

2018 within the Six Nations of The grand River Reserve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 9: Generalized Linear Mixed Model results for predictor variables based on subsurface 

data (top) and surface data (Bottom). Results indicate that no predictor variables were significant 

estimators for presence or absence of contamination. 

 

 
Figure 10: Comparison of contaminated and uncontaminated wells by decade drilled. 



 

 
Figure 11: Comparison of contaminated and uncontaminated wells by the road that they are on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 12: Advanced Hotspot Analysis of contaminated wells within the Six Nations of The 

Grand River Reserve. 

 



 
Figure 13: Uncontaminated and Contaminated wells in region of significant clustering from 

hotspot analysis of contaminated wells within the Six Nations of The Grand River Reserve. The 

corner of Tuscarora Road and 6th Line is a specific area of interest in this region, with the highest 

density of contaminated wells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 14: Depth of contaminated and uncontaminated wells in areas of significant 

contaminated clustering.  

 

 
Figure 15: Watercourse flow within the Six Nations of The Grand River Reserve in relation to 

significant contaminated well hotspot 
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