

Canada

Integration of Land Surface Simulation using MESH and Field Studies in the Prairies

DRI 2009 Workshop

Brenda Toth, Saul Marin, Bruce Davison, Garth van der Kamp, Raoul Granger, Al Pietroniro

Hydrometeorology and Arctic Lab MSC Environment Canada January 27, 2009

Integration of MESH and Field Studies in the Prairies

- Environmental Prediction System
 - Kenaston Mesonet/Brightwater Creek study (forced by point data and verified by local distributed soil moisture mesonet)
 - Entire SSRB (forced by regional datasets with water availability outputs)
- Analysis of 2007 data, production of the NAESI report
 - Use of the geologic weighing lysimeter in assessing the closure of the local measured water budget in 2007
 - Production of 2002-2007 water availability indicators and assessment of modelled error for water budget (SSRB)
- Review of available data for 2008
- Projected data for 2009

Application and verification of an Environmental Prediction System (MESH)

Two nested modelling domains

Stand alone MESH runs Study site – Kenaston/Brightwater Creek

Use of geological weighing lysimeter to asses closure of the water budget

Overview of the Weighing Lysimeter Instrumentation

Fundamentals

- Change of mechanical surface loading is instantaneously transmitted to deep saturated formations resulting in change of <u>pore water</u> <u>pressure</u>;
- Piezometers in saturated formations can therefore detect pore pressure changes due to hydrological processes such as:
 - ✓ Snow accumulation;
 - ✓ Rainfall;
 - ✓ Evapotranspiration

Conceptual Sketch of Piezometric Weighing Lysimeter Installation

Van der Kamp et al, 2003

Geologic weighing lysimeter with measured precip and soil moisture

Winter/Spring lysimetric, SWE and flow measurements

Date

Summer/Fall lysimetric, flux and soil moisture measurements

Precip = 233 mm ET = 229 mm Runoff = 0 mm Δ S = -55 mm Residual = 59 mm90.0 30.0 Soil Moisture (%) or lysmetric 25.0 60.0 20.0 Rainfall (mm) 30.0 load (mm) 0.0 10.0 -30.0 5.0 -60.0 00 Aug 2007 **Jul 2007** sep 2007 May 2007 Jun 2007 Oct 2007 Vov 2007 Date Rain (mm) 0-5 cm Soil Moisture (%)
20 cm Soil Moisture (%) ▲ 50 cm Soil Moisture (%) — cumulative load (mm) Precip = 329.5 mm ET = 229 mm Runoff = 32 mm ΔS = -15 mmCumulative Residual = 83.5 mm (25% of precipitation)

Modelled and measured soil moisture

Distributed soil moisture as model output – RPN MESH runs over SSRB

2002-2007 modelled water availability indicators (SSRB), closure of water budget

availability parameter	2002	2003	2004	2005	2006	2007	average
total precipitation	394.7	334.0	392.5	525.0	396.2	447.0	414.9
evaporation	279.3	285.2	279.0	335.0	354.4	351.2	314.0
total runoff	59.4	61.9	61.7	104.8	77.0	85.5	75.0
ground water recharge	7.0	8.1	6.2	12.6	10.1	9.2	8.9
interflow	0.03	0.03	0.03	0.06	0.04	0.04	0.04
continuity equation *	49.0	-21.3	45.6	72.6	-45.3	0.9	16.9
error (% of precip)	17.5%	-7.5%	16.4%	21.7%	-12.8%	0.3%	5.9%
average SWE	15.9	15.7	15.9	14.6	15.0	19.8	16.1
average soil moisture (vol %)	0.12	0.14	0.13	0.15	0.16	0.15	0.14
spring soil moisture (vol %)	0.16	0.18	0.15	0.19	0.20	0.19	0.18
fall soil moisture (vol %)	0.11	0.12	0.12	0.13	0.13	0.13	0.12
summer withdrawal from storage	23.6	29.6	17.1	26.9	34.8	30.6	27.1

* error = precip - evap - runoff - recharge -interflow - (change in storage)

DRAFT – Page 12 – February 17, 2009

2008 datasets

surveysprecip/soil moisture

Snow

- (distributed)
- energy flux data (point)
- geologic weighing lysimeter (areal)
- Satellite overpass July and November

Sites	of Sites					
Soil moisture/rain						
stations	24	Soil moisture and temp at 0-5cm depth				
		Soil moisture and temp at 20cm depth				
		Soil moisture and temp at 50cm depth				
		Rain (tipping buckets)				
Annie's well and						
Flux site	2	Precipitation				
		Snow depth				
		Wind speed and direction at 1.5m				
		Air temperature at 1.5m				
		Barometric pressure				
	1	Geological weighing lysimeter (deep well) water level				
Flux site		3D wind speed and direction				
		Air temperature at 3m and 6m				
	a state of the second	Vapour pressure at 1.5m, 3m and 6m				
	Sale (Selection)	Net radiation				
		Latent heat flux				
A PARE Land	New York	Sensible heat flux				
		Carbon dioxide flux				
		Soil heat flux				
		Friction velocity				
		Momentum flux				
		Water vapour and carbon dioxide density				

Number

Summary for consideration to DRI

Analysis of 2007 measured and modelled data demonstrates

- Closure of the measured water budget shows a possible error of 25%
- Stand alone MESH to reasonably replicates some water availability parameters

Water availability study modelling data

- End of drought through to drought recovery comparison of indicators
- Modelled water balance closure (i.e. assessment of total error) is within measured error

2007 and 2008 measured availability

- Time series
 - met, distributed soil moisture and precipitation
 - Lysimetric data
- Point data
 - Soil (24 site), SWE (16 transects)
 - satellite ground truth data (2007 and 2008 campaigns)
- Model input/ouput (2002 2007 input/output data)
- Geophysical fields, forcing, output (5 indices)
- Available through NAESI and/or DRI website

2009 or 2010 data, significant ground truth data added to above

Support and collaboration

- DRI supported post doctoral fellow Dr. Saul Marin for a portion of 2008
- Doctoral candidate Dean Shaw
- In kind support to DRI from EC
 - Bruce Davison Anthony Liu (MEC/MESH modelling)
 - Brenda Toth (NAESI)
 - National Agri-Environmental Standards Initiative project funded by Agri-food and Agriculture Canada
 - EC support for Diane Holman, Aditi Garg, Cody Fong as research assistants
 - Collaborative support from IP3 and IPY supported students Andy Salisbury, Robin Wilson, Craig Thompson
- Collaborative projects with Dr. Aaron Berg (Univ of Guelph), Ramata Maggigi (Univ of Sherbrooke), Anne Walker (EC/Downsview)

