Real time drought monitoring and forecasting over the Canadian Prairies using the Variable Infiltration Capacity model

Lei Wen¹, Charles A. Lin^{1,2}, Zhiyong Wu³, Guihua Lu³ John Pomeroy⁴, Yufei Zhu²

1. Objective and methodology

- A real-time drought monitoring and seasonal prediction system is being developed for the Canadian Prairies (<u>http://www.meteo.mcgill.ca/~leiwen/vic/prairies/</u>)
- The system uses the Variable Infiltration Capacity (VIC) land surface macroscale hydrology model to simulate daily soil moistures for three soil layers (0-20 cm, 20-100 cm, and 0-100 cm) starting from 1 January, 1950, and continually running through present into the future with a 15-day lead time
- The system is driven by daily maximum and minimum air temperatures and precipitation from 1,167 meteorological stations for monitoring runs, and from the operational Canadian GEM (Global Environmental Multiscale) model and 40-number super ensemble forecasts for forecasting VIC runs
- The system is updated daily at present
- The VIC soil moisture is used together with the 56-yr climatology (1950-2005) to calculate a soil moisture index SMAPI (Soil Moisture Anomaly Percentage Index) for measuring the severity of both agricultural and hydrological droughts; the prairie drought history starting from 1 January, 1950 up to present can then be reconstructed using SMAPI
- The calculated SMAPI explains well most documented severe drought events on the Prairies over the past 60 years; and compares favorably with the North American drought monitor and Agriculture and Agri-Food Canada drought maps

Establishment of VIC model over the Prairies

"A key task in hydrology is to attempt to unravel the organization of the complexity of hydrologic processes at various scales" Dooge (2004).

Effectively modeling rainfall-runoff processes at various temporal and spatial scales has always been the wish (dream) of hydrologists. "The philosophical debate on the development of hydrological models seems to be centered on the avenue chosen from either the 'upward' approach or the 'downward' approach" (Sivapalan et al., 2003). Natural hydrological system is sufficiently complex and nonlinear that it is impossible to include all details of hydrologic phenomena in one method for modeling rainfall-runoff processes at different scales. To do so is also unnecessary. Heterogeneity effects of land covers and soil textures as well as characteristics of simultaneous occurrence of different runoff component generations and flow concentrations may behave differently at different scales. "Processes important at one scale may not necessary be important at other scales" (Blöschl and Sivapalan, 1995). "Certain details proven to be important at small scales may average out at large scales. Mainly due to the existence of nonlinearity in the natural hydrologic system, formulations appropriate at a given scale usually are not applicable at others" (Klemes, 1986). As Dooge (1986) pointed out: "the history of science suggests that progress is not made by a continuous progression from one scale to another"; therefore, how to achieve a meaningful conceptualization of physical processes at a specific scale poses an immediate problem for hydrological modelers when formulating the rainfall-runoff relation at that scale. Such a conceptualization is used as the scientific base for the development of a macroscale hydrological model such as VIC.

Because of the complexity observed on the prairie terrain and the source issue of multiple flow supplements, as well as the availability of supporting date, it would be more perorate to use a macroscale conceptualized hydrological model for the prairie hydrological simulation, rather than using a fully physically-based model. As the rainfall-runoff relationship in a conceptual model is conceptualized, successfully simulating the relationship for a specific basin is not necessarily connected to the physical reality of the basin terrain. The macroscale rainfall-runoff relationship is a macro concept. The main reason for conceptual models being able to apply to many basins with different terrain conditions is through model calibration process. Diversified calibrated parameter values can reflect different terrain conditions. This is the art of a conceptual model.

2. VIC set up over the Prairies (1,964,000 km²)

The VIC model is applied over a Prairies domain consisting of 4393 grid points with a resolution of 0.25 ° x 0.25 °

1,167 met stations (black dot); providing VIC with meteorological driving forces for monitoring runs

Flat terrain and non-contributing drainage areas; bring challenges to hydrological modeling

- 3. VIC calibration and validation over 12 catchments from 7 hydrological simulation regions on the Prairies
 - Calibration period 1994-1999
 - Validation period 1975-2001
 - Only water balance mode is used
 - 24-h time step for main process
 - 1-h time step for snow band solving
 - VIC calibration and validation are done using observed hydrographs
 - VIC is forced by observed max and min temperature and precipitation
 - The IDW method is used for the driving forces interpolating
 - •Temperature lapse rate (C/100 m) = 0.75 °C
 - Precipitation lapse rate (%/100 m) = 5 mm

We calibrate the six VIC user-calibrated hydrological parameters using observed daily hydrographs at the outlets of each of the 7 calibration catchments.

The validation of the calibrated VIC over the Prairies involves the following three parts.

1. First, we validate VIC using observed daily hydrographs from the same 7 calibration catchments taken over different periods than for calibration.

2. Second, we further validate VIC using observed daily hydrographs from 4 additional catchments.

3. Third, we compare simulated soil moisture anomalies with *in situ* observations from 6 Alberta sites.

We define 7 VIC simulation regions over the Prairies; which are based on annual precipitation from 1950 to 2005

4. Results

11 Catchments' information and VIC calibration and validation results

D	River Name	Station Name	Station	Station	Station	Dra	ainage Area	(km^2)	ELEV	AVG T	ANN PREC
		Station I tunic	ID	Lat	Long	Gross	Effective	(%)		11,0_1	
1	ODEI	THOMPSON	05TG003	55.996	-97.356	6110	6110	100.0	259	-3.1	508.7
2	GEIKIE	WHEELER	06DA004	57.589	-104.203	7730	7730	100.0	501	-3.4	492.7
3	NOTIKEWIN	MANNING	07HC001	56.919	-117.618	4680	4660	99.6	791	-0.8	483.0
4 Ca	1. TORCH	LOVE	05KE002	53.588	-104.161	4650	4650	100.0	513	0.0	454.9
5	WHITEMOUTH	WHITEMOUTH	05PH003	49.939	-95.956	3750	3750	100.0	325	2.1	592.6
6	BOW	CALGARY	05BH004	51.050	-114.050	7870	7740	98.3	1953	-1.5	690.7
7	VERMILION	MARWAYNE	05EE007	53.491	-110.397	7270	3110	42.8	649	1.9	418.1
8	ATHABASCA	MCMURRAY	07DA001	56.781	-111.400	133000	131000	98.5	807	0.2	532.8
9 _V	NORTH SASKATCHEWAN	PRINCEALBERT	05GG001	53.203	-105.768	131000	72300	55.2	814	1.5	465.3
10 10	^{1.} SOUTH SASKATCHEWAN	SASKATOON	05HG001	52.140	-106.643	141000	88100	62.5	965	3.0	433.1
11	ASSINIBOINE	BRANDON	05MH013	49.871	-100.100	93700	36500	39.0	576	1.9	433.5
ID	River Name	Period	INFILT	Ds	Ds MAX	Ws	DEPTH 2	DEPTH 3	Err.	Nash	Nash
ID	River Name	Period	INFILT	Ds	Ds_MAX	Ws	DEPTH_2	DEPTH_3	Err. (%)	Nash (day)	Nash (Mon)
ID 1	River Name ODEI	Period 1994-2005	INFILT 0.04	Ds 0.026	Ds_MAX 25.5	Ws 0.31	DEPTH_2 0.68	DEPTH_3	Err. (%) 7.3	Nash (day) 0.73	Nash (Mon) 0.82
ID 1 2	River Name ODEI GEIKIE	Period 1994-2005 1994-2005	INFILT 0.04 0.03	Ds 0.026 0.059	Ds_MAX 25.5 26.5	Ws 0.31 0.39	DEPTH_2 0.68 0.62	DEPTH_3 0.62 1.12	Err. (%) 7.3 -4.8	Nash (day) 0.73 0.75	Nash (Mon) 0.82 0.77
ID 1 2 3	River Name ODEI GEIKIE NOTIKEWIN	Period 1994-2005 1994-2005 1994-2005	INFILT 0.04 0.03 0.09	Ds 0.026 0.059 0.022	Ds_MAX 25.5 26.5 2.5	Ws 0.31 0.39 0.71	DEPTH_2 0.68 0.62 0.47	DEPTH_3 0.62 1.12 0.63	Err. (%) 7.3 -4.8 2.7	Nash (day) 0.73 0.75 0.64	Nash (Mon) 0.82 0.77 0.75
ID 1 2 3 4 Ca	River Name ODEI GEIKIE NOTIKEWIN I. TORCH	Period 1994-2005 1994-2005 1994-2005 1982-1987	INFILT 0.04 0.03 0.09 0.03	D s 0.026 0.059 0.022 0.031	Ds_MAX 25.5 26.5 2.5 2.0	Ws 0.31 0.39 0.71 0.92	DEPTH_2 0.68 0.62 0.47 0.72	DEPTH_3 0.62 1.12 0.63 0.33	Err. (%) 7.3 -4.8 2.7 -23.1	Nash (day) 0.73 0.75 0.64 0.68	Nash (Mon) 0.82 0.77 0.75 0.69
ID 1 2 3 4 Ca 5	River NameODEIGEIKIENOTIKEWIN1.TORCHWHITEMOUTH	Period 1994-2005 1994-2005 1994-2005 1982-1987 1994-2005	INFILT 0.04 0.03 0.09 0.03 0.11	D s 0.026 0.059 0.022 0.031 0.011	Ds_MAX 25.5 26.5 2.5 2.0 24.0	Ws 0.31 0.39 0.71 0.92 0.34	DEPTH_2 0.68 0.62 0.47 0.72 0.83	DEPTH_3 0.62 1.12 0.63 0.33 0.66	Err. (%) 7.3 -4.8 2.7 -23.1 19.1	Nash (day) 0.73 0.75 0.64 0.68 0.61	Nash (Mon) 0.82 0.77 0.75 0.69 0.70
ID 1 2 3 4 Ca 5 6	River NameODEIGEIKIENOTIKEWIN1.TORCHWHITEMOUTHBOW	Period 1994-2005 1994-2005 1994-2005 1982-1987 1994-2005 1990-1999	INFILT 0.04 0.03 0.09 0.03 0.11 0.06	D s 0.026 0.059 0.022 0.031 0.011 0.038	Ds_MAX 25.5 26.5 2.5 2.0 24.0 28.5	Ws 0.31 0.39 0.71 0.92 0.34 0.28	DEPTH_2 0.68 0.62 0.47 0.72 0.83 0.46	DEPTH_3 0.62 1.12 0.63 0.33 0.66 1.85	Err. (%) 7.3 -4.8 2.7 -23.1 19.1 -0.4	Nash (day) 0.73 0.75 0.64 0.68 0.61 0.80	Nash (Mon) 0.82 0.77 0.75 0.69 0.70 0.87
ID 1 2 3 4 Ca 5 6 7	River NameODEIGEIKIENOTIKEWIN1.TORCHWHITEMOUTHBOWVERMILION	Period 1994-2005 1994-2005 1994-2005 1982-1987 1994-2005 1990-1999 1981-1990	INFILT 0.04 0.03 0.09 0.03 0.11 0.06 0.01	D s 0.026 0.059 0.022 0.031 0.011 0.038 0.001	Ds_MAX 25.5 26.5 2.5 2.0 24.0 28.5 0.5	Ws 0.31 0.39 0.71 0.92 0.34 0.28 0.58	DEPTH_2 0.68 0.62 0.47 0.72 0.83 0.46 0.48	DEPTH_3 0.62 1.12 0.63 0.33 0.66 1.85 0.40	Err. (%) 7.3 -4.8 2.7 -23.1 19.1 -0.4 31.6	Nash (day) 0.73 0.75 0.64 0.68 0.61 0.80 0.40	Nash (Mon) 0.82 0.77 0.75 0.69 0.70 0.87 0.58
ID 1 2 3 4 5 6 7 8	River NameODEIGEIKIEODTIKEWINTORCHWHITEMOUTHBOWVERMILIONATHABASCA	Period 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1990-1999 1981-1990 1966-1975	INFILT 0.04 0.03 0.09 0.03 0.11 0.06 0.01	Ds 0.026 0.059 0.022 0.031 0.011 0.038 0.001	Ds_MAX 25.5 26.5 2.5 2.0 24.0 28.5 0.5	Ws 0.31 0.39 0.71 0.92 0.34 0.28 0.58	DEPTH_2 0.68 0.62 0.47 0.72 0.83 0.46 0.48	DEPTH_3 0.62 1.12 0.63 0.33 0.66 1.85 0.40	Err. (%) 7.3 -4.8 2.7 -23.1 19.1 -0.4 31.6 13.9	Nash (day) 0.73 0.75 0.64 0.68 0.61 0.80 0.40 0.57	Nash (Mon) 0.82 0.77 0.75 0.69 0.70 0.87 0.58
ID 1 2 3 4 Ca 5 6 7 8 9 Va	River NameODEIGEIKIEODEIGEIKIENOTIKEWINTORCHWHITEMOUTHBOWVERMILIONVERMILIONNORTH SASKATCHEWAN	Period 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1990-1999 1981-1990 1966-1975 1991-2000	INFILT 0.04 0.03 0.09 0.03 0.11 0.06 0.01	Ds 0.026 0.059 0.022 0.031 0.011 0.038 0.001	Ds_MAX 25.5 26.5 2.5 2.0 24.0 28.5 0.5	Ws 0.31 0.39 0.71 0.92 0.34 0.28 0.58	DEPTH_2 0.68 0.62 0.47 0.72 0.83 0.46 0.48	DEPTH_3 0.62 1.12 0.63 0.33 0.66 1.85 0.40	Err. (%) 7.3 -4.8 2.7 -23.1 19.1 -0.4 31.6 13.9 -5.1	Nash (day) 0.73 0.75 0.64 0.68 0.61 0.80 0.40 0.57 0.59	Nash (Mon) 0.82 0.77 0.75 0.69 0.70 0.87 0.58 0.62 0.69
ID 1 2 3 4 5 6 7 8 9 10 Va	River NameODEIGEIKIEODEIGEIKIENOTIKEWINTORCHWHITEMOUTHBOWVERMILIONVERMILIONNORTH SASKATCHEWANSOUTH SASKATCHEWAN	Period 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1994-2005 1990-1999 1981-1990 1966-1975 1991-2000 1951-1960	INFILT 0.04 0.03 0.09 0.03 0.11 0.06 0.01	Ds 0.026 0.059 0.022 0.031 0.011 0.038 0.001	Ds_MAX 25.5 26.5 2.5 2.0 24.0 28.5 0.5	Ws 0.31 0.39 0.71 0.92 0.34 0.28 0.58	DEPTH_2 0.68 0.62 0.47 0.72 0.83 0.46 0.48	DEPTH_3 0.62 1.12 0.63 0.33 0.66 1.85 0.40	Err. (%) 7.3 -4.8 2.7 -23.1 19.1 -0.4 31.6 13.9 -5.1 -8.8	Nash (day) 0.73 0.75 0.64 0.68 0.61 0.80 0.40 0.57 0.59 0.55	Nash (Mon) 0.82 0.77 0.75 0.69 0.70 0.87 0.58 0.62 0.69 0.66

CHURCHILL Basin:

1. The Churchill River itself is generally made up of a series of lakes of various sizes; flat hydrographs

- 2. Scare of met stations;
- 3. Drainage area 119,000 km²

lat 55.645922° ion -104.735995° elev 370 m

er... 🔻 🖺 10-year_c... 🛛 😂 Google Ea...

EN 🗘 🖸 📰 🌀 🔝 2:25 PM

Eye alt 21.25 km

P

VIC parameters after and before calibration for the period 1973-1982

for Churchill River Above Otter Rapids

Current: Prairie\OTTER

The validation result for the period 1963-2005

Nash_month = 0.52

Relative error = 16%

Comparison of simulated and observed soil moisture anomalies from 6 Alberta sites

Cite.	Annual	Site		VIC grid		Correlation coefficient (r)			
Site	Precip. (mm)	Lat. (°N)	Long. (°W)	Lat. (°N)	Long. (°W)	0-20 cm	20-100 cm	0-100 cm	
Fortremillion	364	58.38	116.04	58.38	116.13	0.17	-0.09	0.09	
Beaver Lodge	337	55.20	119.40	55. 16	119.38	0.44	0.56	0.59	
Lacombe	451	52.45	113.76	52.38	113.88	0.45	0.61	0.58	
Stavely	513	50.18	113.88	50.16	113.88	0.34	0.58	0.56	
Lethbridge	359	49.63	112.80	49.63	112.88	0.67	0.65	0.69	
Onefour	335	49.12	110.47	49.13	110.38	0.48	0.10	0.22	

Please note: the simulated soil moisture represents the average situation of a $0.25^{\circ} \times 0.25^{\circ}$ gird box. VIC is not specifically calibrated for any of these 6 grid points. Instead, we use the calibrated values for the 7 simulation regions of the Prairies in our soil moisture simulations.

Comparison results at the Onefour site

	Cotalizzant	Station	Drainage	e Area (km²)	Period	With non- contributing area		Without non- contributing area	
	Catchment		Total	Effective		$E_r(\%)$	E _c	$E_r(\%)$	E _c
8	Athabasca	McMurray	133000	131000	66-75	14.0	0.81	14.3	0.80
9	North Sask.	Princealbert	131000	72300	91-00	0.9	0.80	53.4	-0.45
10	South Sask.	Saskatoon	141000	88100	51-60	3.1	0.91	47.5	0.54
11	Assiniboine	Brandon	93700	36500	77-87	5.3	0.77	163.2	-2.23

Study of non-contributing drainage area effect on runoff generation

By incorporating noncontributing drainage areas into runoff calculations (red dashed-lines) could substantially improve the ability of hydrological models to simulate surface and sub-surface runoff in regions where the wetland is a dominant feature of land covers.

Comparison results at the outlets of the South Saskatchewan and Assiniboine catchments

5. Applications of VIC soil moistures

56-yr (1950-2005) average of soil moisture (top 1-m) over the Prairies with the 200 mm soil moisture contour, showing modeled very dry areas

Identifications of the Palliser Triangular, Geological Survey of Canada Definition — — — — — The Prairies Dry Belt, Jones, 1987 Identifications of the Palliser Triangle region and the Prairie Dry Belt (Jones, 1978) in South Prairies.

Another example of VIC 35-yr soil moisture climatology (1971-2005) over China

We compare qualitatively the simulated 35-yr average of the top 1-m soil moisture with an official chart of dry and wet zones in China. The simulated 180 mm soil moisture contour is in close agreement with the dry and wet zones division of the chart (page 98 in the China Flood and Drought Disaster; 1997).

Soil Moisture Anomaly Percentage Index (SMAPI)

$$SMAPI = \frac{\theta - \overline{\theta}}{\overline{\theta}} \times 100\%$$

• The soil moisture climatology reflects local characteristics and mirrors the hydrometeorological phenomena of a region;

• The concept of relative soil wetness for use in measuring drought severity

• The study of Quiring and Papakryiakou (2003) indicates that the Z-index is best suited for predicting yield. The Z-index is a measure of the monthly soil moisture anomaly

Drought classifications based on SMAPI

Category	SMAPI	Average Frequency
extreme drought	≤ - 50%	0.005
severe drought	-50% to -30%	0.020
moderate drought	-30% to -15%	0.100
mild drought	-15% to -5%	0.200
near normal	-5% to 5%	0.350
slightly wet	5% to 15%	0.200
moderately wet	15% to 30%	0.100
very wet	30% to 50%	0.020
extremely wet	> 50%	0.005

Reconstructing prairie drought history

We calculate daily (monthly, seasonal and annual) SMAPI for the three soil layers (0-20 cm, 20-100 cm, and 0-100 cm) at each of the 4,393 grid points covering the Prairies from Jan.1 up to present http://www.meteo.mcgill.ca/~leiwen/vic/prairies/

Southern Saskatchewan, April 2002; Taken from Stewart

Example 2: daily SMAPI distributions of the three soil layers for April 20, 2002, together with the April-2002 average

Comparing SMAPI with 'soft' data, e.g., media reports

"Notable among the single-year droughts are the years 1961 and 1967, both of which were years of widespread drought on the Canadian prairies" (Madhav L. Khandekar)

Comparison of drought indexes of soil moisture from VIC simulation and North American Drought Monitor ('observation'). The index of VIC model is the monthly averaged value; and NADM index represents the mean of the month. This is a qualitative comparison.

Prepared by PFRA (Praine Farm Rehabilitation Administration) using data from the Timely Climate Monitoring Network and the many federal and provincial agencies and volunteers that support it.

Canada

Annual average comparison of SMAPI and precipitation percentile

Re-contracted prairie droughts based on VIC daily SMAPI

Real-time prairie drought monitoring and forecasting using VIC-based daily SMAPI

Thanks very much Merci beaucoup!