Adjusted station precipitation

Éva Mekis

Climate Research Division
Environment Canada, Toronto

DRI Precipitation and Drought Indices Workshop, Toronto, April 30, 2009

$2^{\text {nd }}$ Generation Precipitation Datase \dagger

- Adjusting for all known issues / problems
- Daily time-step
- Rain and snow adjusted separately
- Revised station selection
- including GSN, protected RCS, homogenized T sites only if long enough
- input from Regional Climate Experts
- missing last 10 years - new segments or new locatión (yifteös ithe)
- more unified station density
maximize the length, minimize missing
- 462 locations across Canada
- no auto stations as of yet included

METADATA requirement:
gauge installation dates, anemometer height
type of measurement programs, etc.

Adjusted Historical Canadian Climate Data availability for climate research purposes

Major Steps

Adjusted rain for known instrument changes
wetting and wind related losses, evaporation
Adjusted snow water equivalent
not 10:1 but computed and mapped for Canada
Adjusted trace events
constant for rain trace
gradually decreasing snow trace correction toward North
Station joining
find connected segments
Standardized Ratio homogeneity test of joined segments
using neighbours and/or overlapping period

Rain gauge adjustments

```
R}=(\mp@subsup{R}{m}{}+\mp@subsup{F}{c}{}+\mp@subsup{E}{c}{}+\mp@subsup{C}{c}{})\times(1+\mp@subsup{W}{c}{})\mathrm{ , where
    Ra}=\mathrm{ adjusted rainfall [mm
    Rm}=\mathrm{ measured rainfall [mm
    Fc = funnel wetting correction [mm / rain measurement
        period]
    Ec = evaporation in container/receiver [mm
    Cc
        measurement period]
    Wc = wind correction factor [% / 100]
```

Type of correction	Unit	$\% / 100$	$\mathrm{~W}_{\mathrm{c}}$	\times	0.04	0.04	0.02
1. Wind at Orifice level	mm	F_{c}	+	0.13	0.13	0.08	
2. Wetting at Funnel area	mm	E_{c}	+	0.02	0.03	0.01	
3. Evaporation	mm	C_{c}	+	0.06	0.03	0.04	
4. Wetting of Receiver or Container	mm			0.21	0.19	0.13	
Sum $(2+3+4)$		MSC, copper receiver	Type B receiver				
Gauge							

METADATA!

The actual adjustment depends on the operational rain gauge type used for measurement at any given date
Devine, K.A. and É. Mekis, 2008. Field Accuracy of Canadian Rain Measurements. Atmosphere-Ocean 46 (2), 213-227.
Routledge, B. 1997: Corrections for Canadian Standard Raingauge, Atmospheric Environment Service Internal report, p.8.

Adjustments for Daily Snowfall Ruler Measurements: Snow Water Equivalent Adjustment Factor $\rho_{\text {SwE }}$

Snow ruler measurements are used $\Rightarrow>$ longer and better coverage Snow water equivalent: not 10:1 but computed and mapped for Canada

Map of mean snowfall density over Canada was created from 175 stations with more then 20 years of overlapping measurements of daily snowfall ruler depth and corrected Nipher gauge precipitation.
$\rho_{\text {sWE }}=N_{\text {swe }} / R_{\text {swe }}$
$\mathrm{N}_{\text {swe }}$ - solid part of the corrected Nipher gauge 6-hourly precipitation
$R_{\text {swe }}$ - archived snowfall water equivalent, measured by snow ruler, assuming a fresh snowfall density of $100 \mathrm{~kg} \mathrm{~m}^{-3}$

The updated fresh snowfall water equivalent adjustment factor map allows estimates of $\rho_{\text {SWE }}$ to be obtained for all long-term climate stations in Canada, which is of particular importance in water balance and climate related studies.
$\rho_{\text {SWE }}$ ranging from 1.5 over the Maritimes to less than 0.8 over southern-central BC.

Major problems with Trace Observation

Fact: The practice of recording trace (less then the smallest measurable amount) are NOT distributed evenly neither in time or space.
Important related factors are:

- Measurement program type
- climate station: 1 or $2 x$ daily observation
- synoptic station: $2 x$ or $4 x$ daily observation
- Station joining (moving)

- it comes often with new observer, new instrument,...
- Switch from Imperial to Metric system

Minimum measurable amount is:
$0.3[\mathrm{~mm}]$ for rain and $0.3[\mathrm{~cm}]$ for snow before 1977-78 and $0.2[\mathrm{~mm}]$ for rain and 0.2 [cm$]$ for snow after 1977-78.

- Evolution of Trace definition by time (MANOBS)

- Role of the observer - different training, learning curve

Trace adjustments applied in the Historical Canadian Climate Database

Rain trace correction: constant $T_{r}=0.07 \mathrm{~mm}$ per event Snow trace correction: gradually decreasing towards North using solid trace classification (snow or ice crystal trace) in the range from 0.07 to $0.03 \mathrm{~mm} /$ event. The purpose is to reduce the trace correction in proportion to the ice crystal event's frequency

Depending on the measurement program type, single archived daily trace flag could include as many as 4

Map of Ice Crystal Ratio for Canada [\%] trace observations

Introducing Trace Occurrence Ratio ($T_{\text {or }}$)

Example: Resolute

Comparison of 6 hourly and daily trace counts $T_{\text {or }}=3.28$

$$
\text { Trace Occurrence Ratio }\left(\mathrm{T}_{\mathrm{or}}\right)=\quad \text { \# of " } \mathrm{T} \text { " flags in daily (rain and snow) archive }
$$

$$
T_{\text {ror s, adjusted }}=T^{*} T_{O R}
$$

Increase of Annual Total / Rain / Snow by Trace Corrections [\%] Period: 1951-2000

Normalized:
Divided by the 1961-1990 value and multiplied by $100 \rightarrow$ Relative weight of trace correction is more obvious

Trace correction does increase the annual total precipitation by up to 20\%. It has the biggest effect on the North.

[^0]
Correction Steps:

RESOLUTE

Joining connected segments

(work completed with Lucie Vincent)

Precipitation observations are often archived under different station numbers => joining
is necessary (234 out of 462 is joined)
Merged station observations are tested for a step at the joining date
Rain and snow observations separately (monthly and annual)
Standardized ratio test using neighbours:
$z_{i}=\left(q_{i}-Q\right) / s_{q} \quad$ where $q_{i}=T_{i} / N_{i}$ is the ratio;
T_{i} - monthly total rain (or snow) at the tested site for year i
N_{i} - monthly total rain (or snow) at the neighbour for year i
Q - average of q_{i}
s_{q} - standard deviation
Adjustments:
$A_{i}=q_{a i} / q_{b i}$, where $q_{b i} \& q_{a i}$ are ratio means before \& after joining date
Validation: Overlapping observations available at both locations (min 10 yr)
Results for rain: 79 stations needed adjustment
Results for snow: 137 stations needed adjustment
Considerations: Monthly versus annual correction factor to be used
Adjusting long period to the recent few years - not suggested

Example: Joining Digby Airport and Bear River, NS

8 neighbours: distance, elevation dif. and correlation computed Adjustment factors - if significant, then decision to be made: -monthly, annual or LS adjustment applied -using neighbours or overlap series

Magnitude of Correction for Precipitation

Adjusted Precipitation Dataset is used in....

- Gridded datasets, like CANGRID
- $2^{\text {nd }}$ version of CTVB
- Climate change indicators
- Research community:

AHCCD web site http://www.cccma.bc.ec.gc.ca/hccd/

Indicator studies

Index	Description	Resolution
Total/Rain/Snowfall Precipitation	Annual/Seasonal accumulated sum of daily events	Ann/ Seas
Percent of long term average T/R/S	Annual sum divided by the mean of 1900-2007 period	Annual
Snow \& Rain to Total Precip ratios	Annual accumulated snow and rain to total precip ratio	Annual
Number of days with T/R/S	Number of days with T/R/S precipitation > Trace events (Tr)	Annual
Simple day intensity index for T/R/S	Annual total $T / R / S$ precipitation divided by the \# of days with $P>\mathrm{Tr}$	Annual
Maximum no of Consecutive Dry / Wet Days	Maximum Number of Consecutive Dry (Wet) Days (Trace excluded)	Annual
Highest 1, 3, 5 and 10 -day T/R/S - Not Normalized	Highest 1-day Total/Rainfall/Snowfall precipitation	Annual
Highest 1, 3, 5 and 10-day T/R/S - Normalized	Highest 1-day T/R/S divided by the annual T/R/S value	Annual
T/R/S days with ≥ 50 th percentile	Number of days with total precipitation ≥ 50 th percentile (median)	Annual
T/R/S days with ≥ 75 th percentile	Number of days with total precipitation ≥ 75 th percentile	Annual
T/R/S days with \geq 90th percentile	Number of days with total precipitation ≥ 90 th percentile	Annual
T/R/S days with ≥ 95 th percentile	Number of days with total precipitation ≥ 95 th percentile	Annual
T/R/S days with ≥ 99 th percentile	Number of days with total precipitation ≥ 99 th percentile	Annual
Days with > 10 mm total precipitation	Number of days with total precipitation $\geq 10 \mathrm{~mm}$	Annual
Days with > 20 mm total precipitation	Number of days with total precipitation $\geq 20 \mathrm{~mm}$	Annual
Days with > 50 mm total precipitation	Number of days with total precipitation $\geq 50 \mathrm{~mm}$	Annual
Standardized Precipitation Index	1,2,3,6,9,12 and 24 month SPI	Monthly

Trends are calculated for ~ 80 indices for the 1900-2007 and 1950-2007 periods respectively

Trends over 1950-2007

Percent of average precipitation for the Prairies

 calculated over the 1900-2007 base period

12-month SPI for all adjusted stations through the end of July, 2002

Future

Status in 2008: dly04 - fewer quality controlled T\&P goes to the archive (mainly airport sites)
dly44-regular climate stations (COOP or volunteer T\&P) go here started as of 2007
dly02 - daily T\&P without QC
As the result of the combined effect of developing "paperless" network and loosing regional experts,
less quality control available and some stations are completely disappearing.
Further data are keypunched, but not all
The new stations are not long enough for climate change studies

Where are the missing data? Perhaps in a box somewhere....

All of our results depend on the density of stations and the quality of data.
What goes in determines what comes out..

[^0]: Source: Éva Mekis, CRD, Environment Canada

