Adjusted station precipitation

Éva Mekis

Climate Research Division Environment Canada, Toronto

DRI Precipitation and Drought Indices Workshop , Toronto, April 30, 2009

2nd Generation Precipitation Dataset

- Adjusting for all known issues / problems
- Daily time-step
- Rain and snow adjusted separately
- Revised station selection
 - including GSN, protected RCS, homogenized T sites only if long enough...
 - input from Regional Climate Experts
 - missing last 10 years new segments or new location (if possi
 - more unified station density maximize the length, minimize missing
- 462 locations across Canada
- no auto stations as of yet included

METADATA requirement: gauge installation dates, anemometer heigh type of measurement programs, etc.

[Background	Rain	Snow	Trace	Joining

Adjusted Historical Canadian Climate Data availability for climate research purposes

Major Steps

Adjusted rain for known instrument changes wetting and wind related losses, evaporation Adjusted snow water equivalent not 10:1 but computed and mapped for Canada Adjusted trace events constant for rain trace gradually decreasing snow trace correction toward North Station joining

find connected segments Standardized Ratio homogeneity test of joined segments using neighbours and/or overlapping period

Background	Rain	Snow	Trace	Joining	Examples

Rain gauge adjustments $R_a = (R_m + F_c + E_c + C_c) \times (1 + W_c), \text{ where}$								
Ka = (Km + Fc + Cc) × (1 + VVc), where Ra = adjusted rainfall [mm] Rm = measured rainfall [mm] Fc = funnel wetting correction [mm / rain measurement period] Ec = evaporation in container/receiver [mm] Cc = container/receiver retention correction [mm / rain measurement period]								MSC Copper Rain Gaus
Type of correction	Unit	Notation	Add or Multiply	MSC, copper receiver	MSC, plastic receiver	Type B Gauge		
1. Wind at Orifice level	% / 100	W _c	×	0.04	0.04	0.02		AES Type-B Rain Gauge
2. Wetting at Funnel area	mm	F _c	+	0.13	0.13	0.08		
3. Evaporation	mm	E _c	+	0.02	0.03	0.01		
4. Wetting of Receiver or Container	mm	C _c	+	0.06	0.03	0.04		
Sum (2 + 3 + 4)	mm			0.21	0.19	0.13		METADATA!

The actual adjustment depends on the operational rain gauge type used for measurement at any given date

Devine, K.A. and É. Mekis, 2008. Field Accuracy of Canadian Rain Measurements. Atmosphere-Ocean 46 (2), 213–227. Routledge, B. 1997: Corrections for Canadian Standard Raingauge, Atmospheric Environment Service Internal report, p.8.

Background Rain Snow Trace Joining Examples		Background	Rain	Snow	Trace	Joining	Examples
---	--	------------	------	------	-------	---------	----------

Major problems with Trace Observation

- Fact: The practice of recording trace (less then the smallest measurable amount) are <u>NOT</u> distributed evenly neither in time or space.
- Important related factors are:
- Measurement program type
 - climate station: 1 or 2x daily observation
 - synoptic station: 2x or 4x daily observation
- Station joining (moving)
 - it comes often with new observer, new instrument, ...
- Switch from Imperial to Metric system
 Minimum measurable amount is:
 - 0.3 [mm] for rain and 0.3 [cm] for snow before 1977-78 and
 - 0.2 [mm] for rain and 0.2 [cm] for snow after 1977-78.
- Evolution of Trace definition by time (MANOBS)
- Role of the observer different training, learning curve

Rain	Snow	Trace	Joining	Examples
	Rain	Rain Snow	Rain Snow Trace	Rain Snow Trace Joining

Trace adjustments applied in the Historical Canadian Climate Database

Rain trace correction: constant $T_r = 0.07$ mm per event Snow trace correction: gradually decreasing towards North using solid trace classification (snow or ice crystal trace) in the range from 0.07 to 0.03 mm / event. The purpose is to reduce the trace correction in proportion to the ice crystal event's frequency

Depending on the measurement program type, single archived daily trace flag could include as many as 4 trace observations

```
Introducing Trace Occurrence Ratio (T<sub>or</sub>)
```

```
Example: Resolute
Comparison of 6 hourly and daily trace counts T_{or} = 3.28
```

of "T" flags in 6 hourly archive

Trace Occurrence Ratio $(T_{or}) =$

of "T" flags in daily (rain and snow) archive

T_{r or s, adjusted} = T * T_{OR}

Background

Rain

Snow

Trace

Joining

Examples

Increase of Annual Total / Rain / Snow by Trace Corrections [%] Period: 1951 - 2000

Joining connected segments

(work completed with Lucie Vincent)

Precipitation observations are often archived under different station numbers => joining is necessary (234 out of 462 is joined)

Merged station observations are tested for a step at the joining date

Rain and snow observations separately (monthly and annual)

Standardized ratio test using neighbours:

 $z_i = (q_i - Q) / s_q$ where $q_i = T_i / N_i$ is the ratio;

 T_i - monthly total rain (or snow) at the tested site for year i

N - monthly total rain (or snow) at the neighbour for year i

Q' - average of q

 s_q - standard deviation

Adjustments:

A_i = q_{ai} / q_{bi}, where q_{bi} & q_{ai} are ratio means before & after joining date
Validation: Overlapping observations available at both locations (min 10 yr)
Results for rain: 79 stations needed adjustment
Results for snow: 137 stations needed adjustment
Considerations: Monthly versus annual correction factor to be used
Adjusting long period to the recent few years - not suggested

Background	Rain	Snow	Trace	Joining	Examples

Magnitude of Correction for Precipitation

Adjusted Precipitation Dataset is used in....

- Gridded datasets, like CANGRID
- 2nd version of CTVB
- Climate change indicators
- Research community:
- AHCCD web site http://www.cccma.bc.ec.gc.ca/hccd/

Snow

`		
KAC	karalina	
	ngi ouna	

Indicator studies

Index	Description	Resolution
Total/Rain/Snowfall Precipitation	Annual/Seasonal accumulated sum of daily events	Ann/ Seas
Percent of long term average T/R/S	Annual sum divided by the mean of 1900-2007 period	Annual
Snow & Rain to Total Precip ratios	Annual accumulated snow and rain to total precip ratio	Annual
Number of days with T/R/S	Number of days with T/R/S precipitation > Trace events (Tr)	Annual
Simple day intensity index for T/R/S	Annual total T/R/S precipitation divided by the # of days with P > Tr	Annual
Maximum no of Consecutive Dry / Wet Days	Maximum Number of Consecutive Dry (Wet) Days (Trace excluded)	Annual
Highest 1, 3, 5 and 10 -day T/R/S - Not Normalized	Highest 1-day Total/Rainfall/Snowfall precipitation	Annual
Highest 1, 3, 5 and 10-day T/R/S - Normalized	Highest 1-day T/R/S divided by the annual T/R/S value	Annual
T/R/S days with \ge 50th percentile	Number of days with total precipitation \geq 50th percentile (median)	Annual
T/R/S days with \ge 75th percentile	Number of days with total precipitation \geq 75th percentile	Annual
T/R/S days with \ge 90th percentile	Number of days with total precipitation \geq 90th percentile	Annual
T/R/S days with \ge 95th percentile	Number of days with total precipitation \geq 95th percentile	Annual
T/R/S days with \ge 99th percentile	Number of days with total precipitation \geq 99th percentile	Annual
Days with > 10 mm total precipitation	Number of days with total precipitation \geq 10 mm	Annual
Days with > 20 mm total precipitation	Number of days with total precipitation \ge 20 mm	Annual
Days with > 50 mm total precipitation	Number of days with total precipitation \ge 50 mm	Annual
Standardized Precipitation Index	1,2,3,6,9,12 and 24 month SPI	Monthly

Trends are calculated for ~ 80 indices for the 1900-2007 and 1950-2007 periods respectively

Background	Rain	Snow	Trace	Joining	Examples	

Trends over 1950 - 2007

Percent of average precipitation for the Prairies calculated over the 1900-2007 base period

12-month SPI for all adjusted stations through the end of July, 2002

The Standardized Precipitation Index (SPI) is based on the probability of precipitation for any time scale. This temporal flexibility allows the SPI to be useful in both short-term agricultural and long-term hydrological applications. SPI Values 2.0+ extremely dry 1.5 to 1.99 very dry 1.0 to 1.49 moderately dry -0.99 to 0.99 near normal -1.0 to -1.49 moderately wet -1.5 to -1.99 severely wet -2 and less extremely wet Background Joining Rain Trace Snow Examples

Future

Status in 2008: dly04 - fewer quality controlled T&P goes to the archive (mainly airport sites)

dly44 - regular climate stations (COOP or volunteer T&P) go here started as of 2007

dly02 - daily T&P without QC

As the result of the combined effect of developing "paperless" network and loosing regional experts, less quality control available and some stations are completely disappearing....

- 462 adjusted P stations

dly04 - 87 has data in 2008 (out of 462) dly44 - 102 stations >6 month (out of 462)

dlyO2 - 121 stations >6 month (out of 462)

Further data are keypunched, but not all

The new stations are not long enough for climate change studies

Where are the missing data? Perhaps in a box somewhere....

All of our results depend on the density of stations and the quality of data.

What goes in determines what comes out..

THANK YOU