Drought Research Initiative (DRI) Theme 1 Characterization

Final DRI Workshop Winnipeg, MB, May 12-14, 2010

15 minutes?

Research Questions of Theme 1

- Q1: What variables are required to quantify the characteristics of the recent drought?
- Q2: What data sources and model outputs are available for quantifying these parameters?
- Q3: How do we characterize and "close the budgets" of water and energy over the Prairies?
- Primary goal is to physically characterize the drought period through these 3 questions

Theme 1 Deliverables

- Collective datasets archived on CDs characterizing the drought
- Outreach to user community and stakeholders through workshops and conferences
- Synthesis article on drought characterization and flow of water and energy

Will highlight work not represented at the workshop

CanGrid Precipitation

Passive Microwave Derived SWE

Derksen & Brown

Phases

500 mb height anomalies

Cold Lows

Wielki and Hanesiak

- No clear cut relation
- Fewer than normal in S.AB. in 2000 & C.AB/SK. in 2002

Meinert, Bonsai, Wheaton

Statistics of the second se

Annual PDSI

Bonsal/Wheaton

Annual SPI

Bonsal/Wheaton

Number of months that experienced (a) drought (SPI \leq -0.5) and (b) severe drought (SPI \leq -1.5) from September 1999 - December 2004. The white points indicate, from north to south, the locations of Fort McMurray, Edmonton and Medicine Hat.

Greene, Leighton, Stewart

Maps by D.T. Price, M. Siltanen & D. McKenney from Canadian gridded monthly climate (interpolations based on ANUSPLIN)

Annual Evapotranspiration 1999 to 2006 (adjusted by ~ +15% for energy-balance closure)

Integrated Root-Zone Soil Water (dashed lines indicate frozen soil)

NDVI anomalies (based on 2000-08 mean) for 2000-2003 250m spatial resolution for 10-day period of July 11-20 Yang, Wang, Trishchenko

Crop Yields - how to tell if monitoring is working!

Lightning

- Significant decline in CG lightning in 2002
- Drought years had much less activity than nondrought years
- Anomalous August !

Hail and Tornado Days

1998 and 2002 were the only years that \geq F2 did not occur

Surface Hydrology

Surface Hydrology

Conclusions

- Have addressed Theme 1 Questions/Deliverables
- 2-3 seasons of below normal precipitation was common more during peak of drought
 - Summer/spring or summer/fall anomalies were critical
 - Snow cover also important in many years
- Drought indices, NDVI, modeled soil moisture, crop yields, precip patterns similar
- Links to atmospheric circulation evident, although different than other droughts
- Extreme events can be important
- Surface-convection feedback appeared to be at play
- Typically 6 month to 1-year lag between precipitation anomalies and effects on forests and surface hydrology depends on many factors.
- Drought cessation linked to large-scales gradual in many areas - convective regime rebounded by 2004

Continued Theme 1 Work

Characterization of Drought

- journal article submission fall/winter 2010
- 3-4 part articles
 - precip/temp and indices
 - surface impacts and processes
 - hydrology
 - synthesis and cohesion of drought spatial and temporal aspects (i.e. tie together atmospheric, surface hydrology and ground water)