

Coupled Hydrological Atmospheric Modelling

Alain Pietroniro, Vincent Fortin, Bruce Davison, Brenda Toth, Jessika Toyra, Diana Versegehy, Pierre Pellerin Environment Canada

ED Souli, N. Kouwen University of Waterloo

CGEO workshop on soil moisture June 19-20, Saskatoon

Topics

- Background information
- Development of a coupled model
 - From NWP to MEC and MESH
 - Alphabet soup
- NAESI water availability study
- Some thoughts.....

Modelling Water Resources

- Hydrologic models are attempts to represent the hydrologic system from precipitation to streamflow in mathematical form.
 - The complexity of the models varies with the user requirements and the data availability.
 - Models vary from simple statistical techniques which use graphical methods for their solution while others include physically-based simulations of the complex three-dimensional nature of a watershed.
 - Always ask what do I want and how much can I afford ???
 - This often dictates which model is used.
 - All models are wrong some are useful
 - Never use one model as verification of another

Hydrology Models

- Heterogeneity of the landscape has forced hydrologist to conceptualize the physics and seek "effective parameters"
 - Focus on effective parameters and precise objective (streamflow)
 - "Equa-finality" is a problem (parameters and models)
 - Get the right answer for the wrong reason
 - REA,GRU,HRU,lumped methods of basin segmentation
 - Buckets to FE PDE's
 - Difficult to compare different approaches
 - water balance focus
 - Energy Balance not solved for explicitly
 - Lack of consistency in the approach

 Meteorological Forcing is typically our largest source of error Environnement Environment Canada
Environment Canada

Southern Manitoba (where flat is FLAT) clay soil

Now what ?

Roseau Basin Soil Moisture Project Landsat Thematic Mapper - Satellite Image from July 29, 2002

Canada Centre for Remote Sensing Centre canadien de télédétection

Basin Segmentation using the GRU

- The WATFLOOD/SLURP/MESH model divides a watershed into a number of units known as Grouped Response Units and discritizes the basins into a series of a square grids.
- GRU is consistent in approach to many LSS used in atmospheric models
- The objective in using the GRU is to model hydrologically-consistent subareas of the watershed, each with known properties.

Canada

WATFLOOD

Representing Soil Moisture infiltration in the GRU

 WATFLOOD and CLASS use Green-Ampt infiltration Equation

$$F(t) = Kt + \psi_f \Delta \theta \ln \left(1 + \psi_f \Delta \theta F(t)\right)$$

GRU conceptual framework requires :

•Requires physical properties of soil for parameterization – based on optimization for each GRU.

•Requires initial soil moisture for each GRU (or tile)

Green-Ampt - Cumulative infiltration for 10year design storm

Tot	al Infiltration (cm)		Initial volumetric moisture						
8		Cumulative Rainfall(cm)		0.1	0.15	0.2	0.25	0.3	0.35
-		<u> </u>							
6	10 year return period Silty-Loam soil	Mv = 0.1 Mv = 0.2	Sand	7.59	7.59	7.59	7.59	7.59	7.59
			Loamy Sand	4.82	7.03	6.9	6.77	6.63	6.48
			Sandy Loam	6.02	5.93	5.83	5.72	5.62	5.5
4		Mv = 0.3	Loam	4.94	4.89	4.75	4.67	4.63	4.51
4			Silt Loam	5.85	5.76	5.67	5.57	5.47	5.37
_		Mv = 0.4	Sandy Clay Loam	4.66	4.54	4.40	4.23	4.00	3.66
2 -	/		Clay Loam	4.39	4.3	4.17	4.03	3.78	3.61
			Silty Clay Loam	4.60	4.37	4.37	4.13	4.06	3.79
0			Sandy Clay	3.93	3.61	3.63	3.4	3.16	2.83
			Silty Clay	4.00	3.81	3.76	3.59	3.27	3.12
•	0 4 8 12 16 20 24		Clay	3.54	3.37	3.19	3.05	2.81	2.49
	Time(hours)	,							<u>. </u>

Monte Carlo Analysis of distributed initial conditions

Soil Type	Type Initial Conditions		Total 24 hour Infiltration					
	Mean	Standard Deviation	Point Simulation	Distributed Simulation				
			Infiltration (cm)	Mean Infiltration (cm)				
Constant Rainfall (1 cm/hr for 24 hrs)								
Loam	0.1	0.05	13.16	13.17				
Loam	0.2	0.05	12.27	12.27				
Loam	0.3	0.05	11.19	11.18				
Loam	0.4	0.05	9.75	9.72				
Loam	0.1	0.1	13.16	13.15				
Loam	0.2	0.1	12.27	12.23				
Loam	0.3	0.1	11.19	11.1				
Loam	0.4	0.1	9.75	9.82				
Silty Clay Loam	0.1	0.05	8.54	8.55				
Silty Clay Loam	0.2	0.05	7.58	7.58				
Silty Clay Loam	0.3	0.05	6.41	6.40				
Silty Clay Loam	0.4	0.05	4.81	4.71				
Silty Clay Loam	0.1	0.1	8.54	8.53				
Silty Clay Loam	0.2	0.1	7.58	7.53				
Silty Clay Loam	0.3	0.1	6.41	6.27				
Silty Clay Loam	0.4	0.1	4.81	4.73				

The GRU or TILE concept

- Links the micro-scale to meso-scale.
- Computational element includes the many tiles that generate run-off.
- Mean initial condition can be established by tile
- All tiles within a grid are subject the same meteorological forcing.
- Grouped according to hydrological response.
- Each has its own connection to the channel system.

Numerical Weather Prediction Framework

Hydrological Prediction Framework

Environmental Prediction Framework

Canada

Environmental Prediction Framework

Improved Soil Water Balance

MESH: A MEC surface/hydrology configuration designed for regional hydrological modeling

- Designed for a regular grid at a 1-15 km resolution
- Each grid divided into grouped response units (GRU or tiles) to deal with subgrid hetereogeneity

Sub-grid Hetereogeneity (land cover, soil type, slope, aspect, altitude) Β С С Α С B B Α С Α С С С B D С B B С D B D D D

A relatively small number of classes are kept, only the % of coverage for each class is kept

MESH: A MEC surface/hydrology configuration designed for regional hydrological modeling

- The tile connector (1D, scalable) redistributes mass and energy between tiles in a grid cell
 - e.g. snow drift
- The grid connector (2D) is responsible for routing runoff
 - can still be parallelized by grouping grid cells by subwatershed

Towards an integrated EP program

Streamflow is the integrator of the water and energy balance indictors at the basin outlet.

- Hydrometric data provides a "reality check" on any water cycle model indicators.
- Climate/synoptic data system provides data for assimilation and validation
- Data assimilation and analysis provides the best "interpolator" between observation points
- THE EC NWP (MEC/MESH) is our best solution to a consistent and rational approach to EP within the water cycle
- MESH can be run coupled or offline
- Public Domain University partners are highly engaged
 - Look towards university sector for innovation

Testing the EP system (NAESI) South Saskatchewan River Basin (SSRB)

Activities

- MESH development
- CaPA development
- CaLDAS development
- Assess the validity of MESH, CaPA and CaLDAS products
- WUAM development and verification
- Technology transfer

1. Hydrological modelling (MESH)

- Will use WATFLOOD model domain established in previous studies so as to be able to compare results
 - Horizontal resolution: 0.2 degrees
- Both CLASS 3.3 and ISBA land surface schemes will be tested
- Simulation period: 2001-2007

1. Hydrological modelling (MESH)

• South Sask at Medecine Hat (56K km²)

- WATFLOOD simulation to which MESH will be compared

2. Precipitation analysis (CaPA)

- Combine different sources of information on precipitation into a single, near real-time analysis
 - Analysis of 6h accumulation of precipitation, covering all of North America on a 15km grid
 - Optimal interpolation technique to obtain our best estimate of precipitation

3. Land data assimilation (CaLDAS)

4. Assess the validity of the indicators

- Database of historic records (collated for 1998-2005)
 - Precipitation
 - Naturalized flows
 - Snow on the ground
- Data Collections for 2006 and 2007
 - Eddy covariance for ET flux assessment
 - TDR Soil Moisture network for soil moisture validation and assimilation
 - Discussions with AAFC Irrigation Development Centre (Outlook) for site selection.
 - Deep soil pressure transducer for integrated soil moisture changes

4. Assess the validity of the indicators

10x10km High Density Area (EC) in headwaters of Brightwater Creek:

- 20-24 Soil moisture & precip stations •
- 1 Energy Flux & Met tower
- 1 Potential deep well lysimeter (new or existing well)
- 13 Snow survey transects

40x50 km Low Density Area (U of Guelph):

14 Soil moisture & precip stations

St Denis Area (U of S, EC):

- 1 Energy Flux Tower
- **Snow** survey transects
- Soil moisture stations (numbers not decided)

Canada

Study Team

Management Leads: Gilbert Brunet and Fred Wrona

Investigators:

<u>EC</u>

Principal Investigators

Alain Pietroniro (AEIRD/HAL) and Pierre Pellerin (MRD)

Stephane Belair (MRD) - Data Assimilation

Vincent Fortin (MRD) – Precip Analysis and Hydrological Modellina Dorothée Charpentier (MRD) – Data Assimilation Isabelle Doré (MRD) – Hydrological Modelling **Bruce Davison (HAL) – Hydrological Modelling** Brenda Toth (HAL) – Hydrological Modelling Matt Regier (HAL) – Network, Data Manager Jessika Töyrä (NWRI) – Soil Moisture Network and Remote Sensing **Raoul Granger (NWRI) – Evaporative Fluxes** Garth van der Kamp (NWRI) – Ground Water **Diana Verseghy (CRD) – CLASS model support Dave Patrick (HAL) – CaPA and Modelling** (WPCD) – Water Use and analysis Atef . Kassem **T. Ham**ory (WPCD) – Water Use and analysis Ivan Vouk (WPCD) – Water Use and analysis **David Burke(WPCD)** – Water Use and analysis Jean-Guy Zakrevsky (WSC) – Client Liaison Michel Jean (CMC) – Client Liaison Marco Carrera (CMC) and Precip Analysis and Data Assimilation

In collaboration with: <u>Environment Canada</u> Anne Walker (CRD) – Remote Sensing Yves Durocher (MSC) – EC Met station Contact

Agriculture Canada Jacques Millette – Outlook Irrigation Centre contact Gordon Bell, PFRA – Saskatoon Harvey Hill, PFRA - Saskatoon

<u>University of Saskatchewan</u> John Pomeroy (DRI program lead) Lawrence Martz – socio-economics

<u>University of Guelph</u> Aaron Berg – Soil Moisture Network

Alberta Agriculture Food and Rural Development Ralph Wright – Provincial Met Station Contact

Opportunities for CGEO in Water Cycle

- EC Environmental Prediction Program is incorporated into our operational numerical modelling system
 - 24/7 operation super computer infrastrcuture
 - Earth systems science approach
 - Sophisticated 4 D var assimilation
 - Provides best interpolation
 - Results only as good as the data that good into the system and models
 - We need continuous feedback between modeling and monitoring
- Community-based modelling approach
 - Encourages collaboration and innovation
- Stick to what we are good at and do the hard stuff.
 - Collaboration within the federal house
 - AAFC- EC-CCRS
 - Collaboration with universities centres of expertise
- Integrated programs don't require development of generalists. They require teams of specialists.

