Drought Research Initiative (DRI) Workshop #1 Saskatoon, Saskatchewan 11-12 January 2006


Applying Hydroclimatological Science to the Socio-Economic Dimensions of Water

Lawrence Martz, Joel Bruneau (USask), Brenda Toth, Al Pietroniro (EC-NWRI)

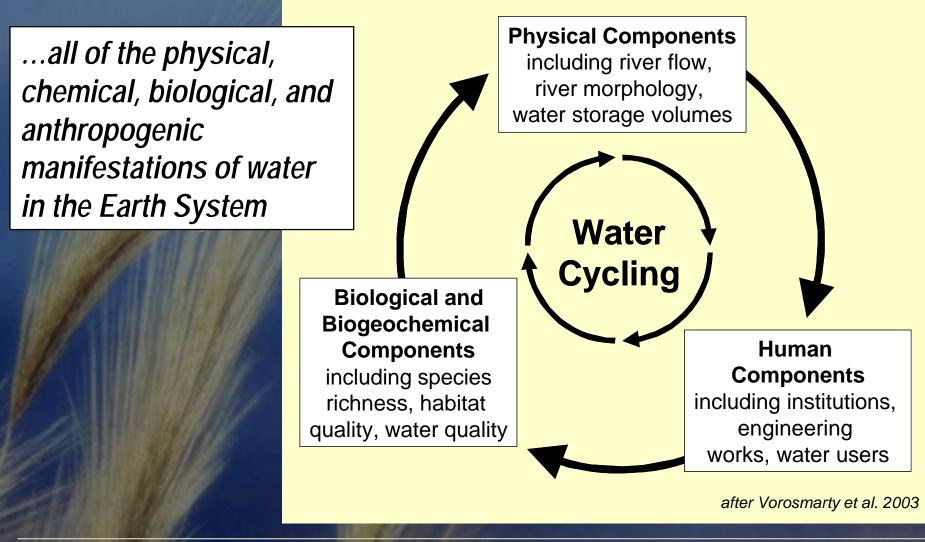
University of Saskatchewan

SSRB Study Area

Linked CCIAP Projects

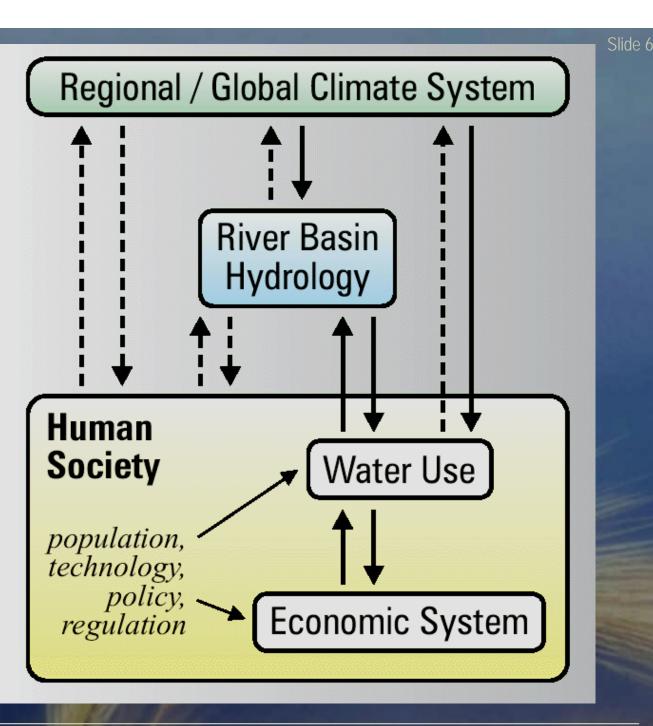
Water Availability in the SSRB under Climate Change

- physical science study to predict future streamflow in SSRB under climate change
- hydrologic models calibrated to SSRB and forced by downscaled climate scenarios from selected GCM

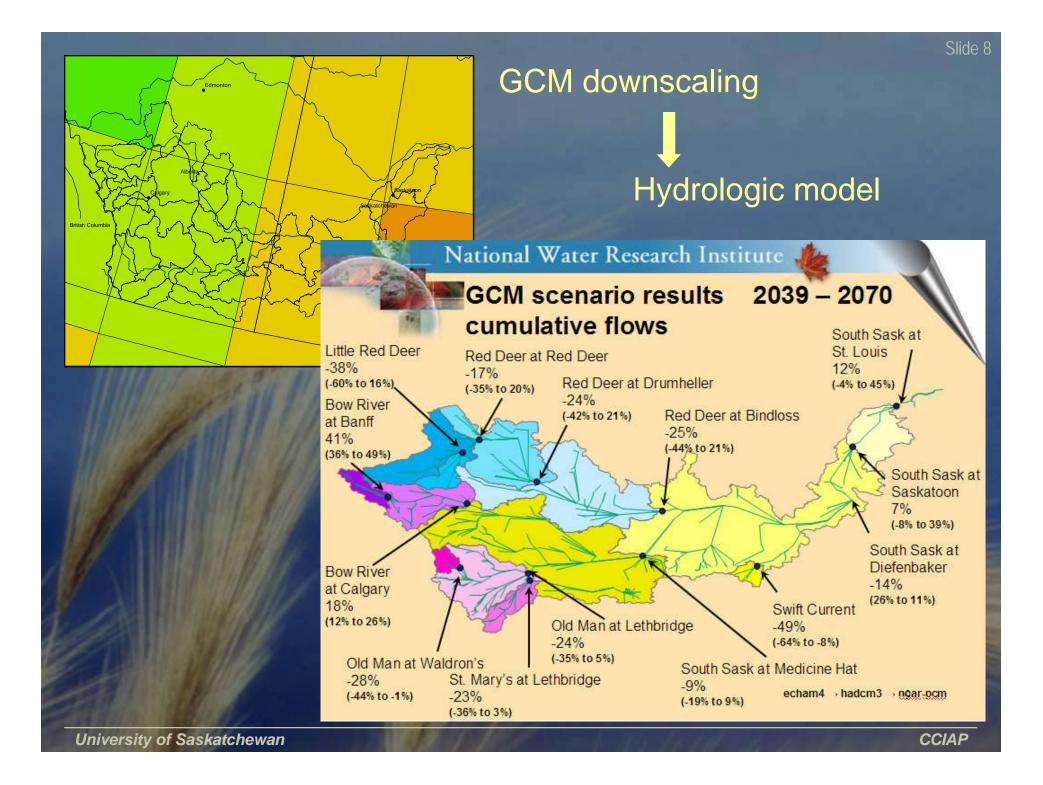

Vulnerability of Key Water Use Sectors in the SSRB to Changes in Water Supply from Climate Change

- social science study to assess the socio-economic impacts of climate change induced water resource availability
- key water withdrawal and in-situ use sectors

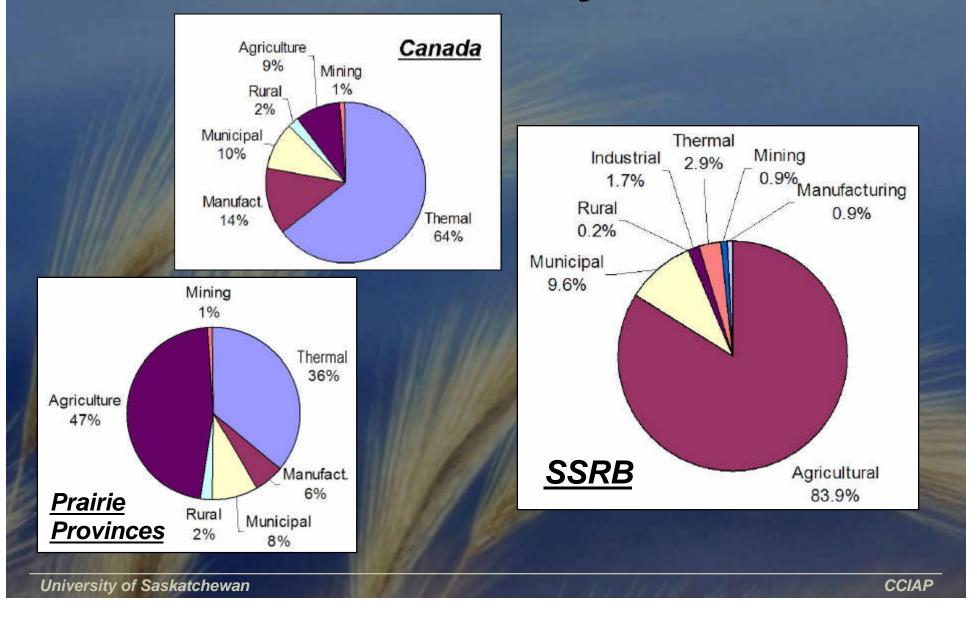
Questions for the SSRB Study


- 1. What is the current water use by sector and by SSRB sub-basin?
- 2. What might water use look like in 2040?
- 3. What is user vulnerability to changes in water availability under climate change?
- 4. What would the economic cost of water availability changes be due to climate change?
- 5. What government policies and programs might help us adapt to this change?

The Global Water System


University of Saskatchewan

SSRB Study Framework



An end-to-end analysis

- 1. Predict future water availability using hydrologic model forced by downscaled climate scenarios,
- 2. Document current water use patterns and the economic value of withdrawal and in-situ uses,
- 3. Simulate water uses under present and future climate
- 4. Estimate the economic cost of changes due to climate change
- 5. Examine policies and programs that govern water use and adaptation to changing water availability.

Water Withdrawal Use by Sector (1996)

WTP to avoid a water shortage of 10%

	WATER USE	SHORT RUN (unanticipated)		LONG R (anticipa		
	million cubic meters	Weighted Average \$ per m ³	Total \$ millions	Weighted Average \$ per m ³	Total \$ millions	
MUNICIPAL						
Households	156	1.39	22	1.27	20	
Businesses	71	2.17	16	1.41	10	
Industrial	45	2.17	10	1.41	6	
IRRIGATION	2,864	0.193	55	0.10	29	
LIVESTOCK	58	46.32	268			
INDUSTRY	174	14.20	248	0.272	5	
MINING	9.86	48.58	48	0.023	0.02	
HYDRO	379,225	0.00024	9	0.00011	4	
THERMAL	1,023	0.627	64	0.00162	0.16	

University of Saskatchewan

Slide 10

Slide 11

Findings and Implications

CLIMATE CHANGE:

- Climate scenarios suggest risk of significant decreases in water availability.
 - Significant variability in outcomes across scenarios.
 - Scenarios bracket zero net losses
 - Average of scenarios is decrease of 10%
 - Significant differences across sub-basins and rivers.
 - Prairies drier while the foothills are wetter.
 - Though the prairies will be drier there will still be significant instream flows.

NET WATER SUPPLY (MCM)	RED DEER RIVER	BOW RIVER	OLDMAN	SOUTH SASK	SSRB TOTAL
MODELED (1961-1990)	1937	2487	2461	1338	8223
AVERAGE CC SCENARIO	1602	2970	1956	900	7428
AVERAGE GAIN/LOSS	-335	483	-506	-437	-795
as a fraction of BASE NWS	-0.17	0.19	-0.21	-0.33	-0.10
MAXIMUM GAIN (or min loss)	417	651	-116	20	981
as a fraction of BASE NWS	0.22	0.26	-0.05	0.02	0.12
MINIMUM GAIN (or max loss)	-856	298	-863	-755	-2176
as a fraction of BASE NWS	-0.44	0.12	-0.35	-0.56	-0.26

Slide 13

Findings and Implications

SOCIO-ECONOMIC GROWTH (2046):

(primarily from Hydroconsult Report (2004) on Non-Irrigation Demand)

- Total withdrawals rise up 100% in Medium Growth Scenario
 - Population will likely double (from 1.5 to 3.1 million)
 - Municipal Withdrawals up by only 70% due to increased efficiency
 - Livestock watering up by 40% due to herd growth
 - Industrial withdrawals up by 270% due to increased activity
 - Thermal Electric withdrawals up 140% due to demand for power
- However, in 1996 total consumption by non-irrigation users was only 155 MCM
 - this is 1.9% of available water based on 1961-90 water regime.
 - Rises to 3.8%
- Implication: Non-irrigation water demand not a significant risk to water resources in SSRB.

NET WATER SUPPLY (MCM)	RED DEER RIVER	BOW RIVER	OLDMAN	SOUTH SASK	SSRB TOTAL
MODELED NWS (1961-90)	1937	2487	2461	1338	8223
AVERAGE FORECAST NWS	1602	2970	1956	900	7428
GAIN due to Climate Change	-335	483	-506	-437	-795
Gain as a fraction of BASE NWS	-0.173	0.194	-0.205	-0.327	-0.097
ACTUAL NON-IRRIGATION CONSUMPTION 1996	41	55	26	32	155
as a fraction of BASE NWS	0.021	0.022	0.036	0.010	0.019
2046 LOW GROWTH	70	85	36	62	253
as a fraction of BASE NWS	0.036	0.034	0.050	0.020	0.031
2046 MED GROWTH	84	110	41	74	309
as a fraction of BASE NWS	0.043	0.044	0.056	0.024	0.038
2046 HIGH GROWTH	98	143	46	88	376
as a fraction of BASE NWS	0.051	0.057	0.064	0.029	0.046

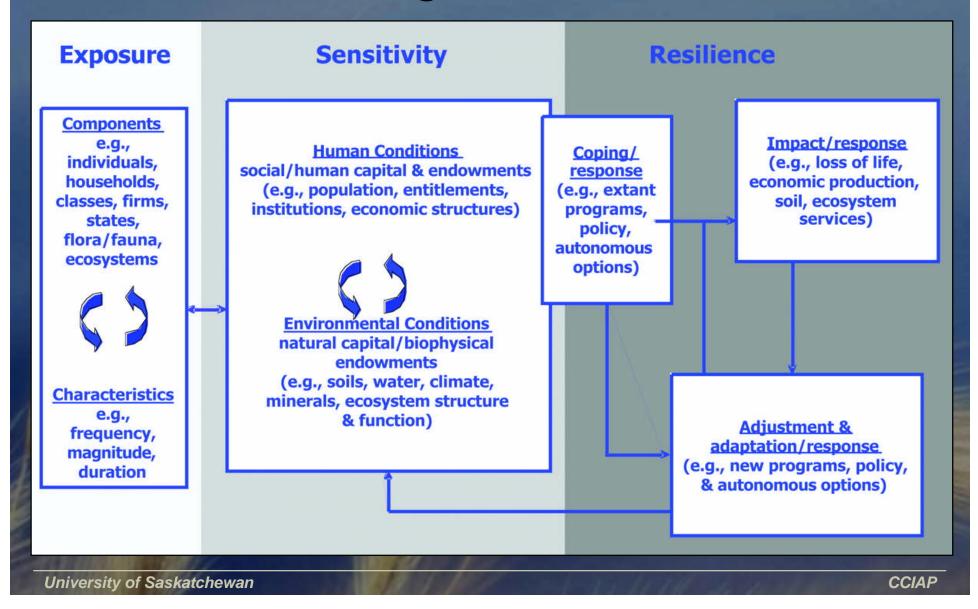
Slide 15

NET DEMAND FOR WATER: Change due to Climate – Change due to Growth in Non-irrigation consumption

CHANGES IN NET DEMAND (MCM)	RED DEER RIVER	BOW RIVER	OLDMAN	SOUTH SASK	SSRB TOTAL
GAINS due to climate change (average of scenarios)	-335	483	-506	-437	-795
as a fraction of BASE NWS	-0.173	0.194	-0.205	-0.327	-0.097
AVG CC and LOW GROWTH	-364	454	-515	-468	-893
as a fraction of BASE NWS	-0.188	0.183	-0.209	-0.350	-0.109
AVG CC and MED GROWTH	-378	428	-520	-479	-949
as a fraction of BASE NWS	-0.195	0.172	-0.211	-0.358	-0.115
AVG CC and HIGH GROWTH	-392	396	-526	-493	-1016
as a fraction of BASE NWS	-0.203	0.159	-0.214	-0.369	-0.124

Findings and Implications

IRRIGATION:

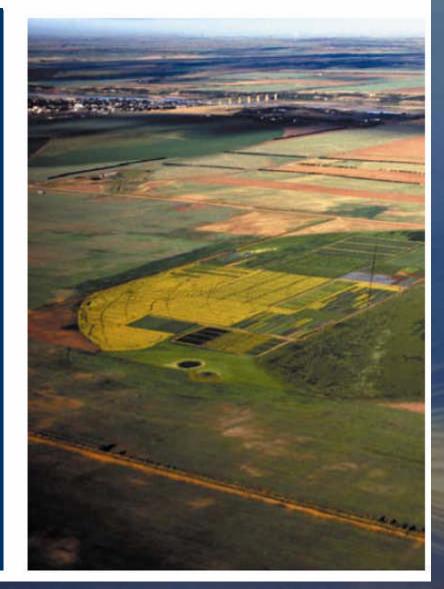

- Large relative to climate change effects
 - in 1996 total SSRB irrigation demand was 2521 MCM
 - 1996 was drier than average over 1976-2004
 - this is 31% of available water based on 1961-90 water regime.
- Gross diversions rising in 1976-2004 period
 - 1.1% per year in OR, 0.10% in BR
 - Bow and Oldman use +-70% of licensed allocations
 - Growth in diversions despite improvements in water use efficiency
 - Return flows likely to fall over time so increase net diversions
- Some capacity to expand outside of Oldman River since instream flows still high in SK-SSR

GROSS DIVERSIONS (MCM)	RED DEER RIVER	BOW RIVER	OLDMAN	SOUTH SASK	SSRB
1996 IRRIGATION Withdrawals	499	612	932	478	2521
as a fraction of BASE NWS	0.258	0.246	0.379	0.357	0.307
as a fraction of AVG CLIMATE SCEANARIOS	0.312	0.206	0.477	0.531	0.339

Following data is based on total diversions in Bow and Oldman Rivers for 1976-2004: SOURCE: Alberta Irrigation Districts Annual Irrigation Diversions: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/irr8782

Average Diversion 1976-2004 (MCM)	1309	1146		
1996 as a fraction of average 1976-2004 diversions	1.03	1.22		
1996 as a fraction of License	77%	66%		
Annual growth in diversions 1976-2004	0.10%	1.12%		
percent return flow 1976-2002	36%	17%		

Assessing Vulnerabilities



CALL FOR PAPERS

Climate Change and Water in the Prairies Conference

> June 21-23, 2006 Saskatoon

(http://saskriverbasin.ca/)

CCIAP

Partners

- Agriculture and Agri-Food Canada (AAFC-PFRA)
- Alberta Agriculture, Food and Rural Development (AAFRD)
- Alberta Environment
- Centre for Rural Studies and Enrichment
- Climate Change Impacts and Adaptation Program (CCIAP)
- Environment Canada
 - National Water Research Institute (NWRI)
 - Water Policy and Coordination Directorate
- Prairie Adaptation Research Collaborative (PARC)
- Prairie Provinces Water Board (PPWB)
- Saskatchewan Research Council
- Saskatchewan Watershed Authority
- University of Alberta
- University of Calgary
- University of Lethbridge
- University of Regina
- University of Saskatchewan
- Partners for the Saskatchewan River Basin

Thank you

Climate Change and Water

South Saskatchewan River Basin

