Seasonal Prediction and Land-Atmosphere Coupling

Charles A. Lin, McGill University

Collaborators: Jacques Derome, George Boer, Daniel Caya, John Hanesiak, Rick Raddatz (and others?)

Questions

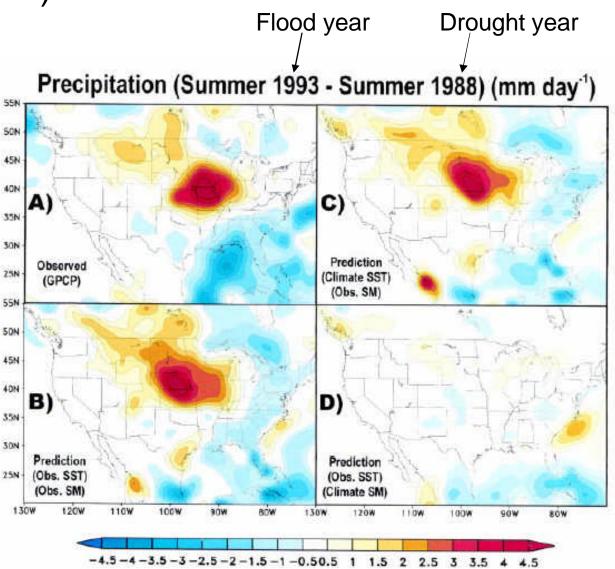
- How well was the current drought predicted on the seasonal time scale?
- What is the effect of soil moisture/snow cover anomalies on predictability, and how does this compare with the sea surface temperature anomalies?
- What is the effect of soil moisture on atmospheric convection?

Methodology

- Historical Forecast Project (HFP)
 - CLIVAR (Derome, Boer): Multi-model (global) ensemble seasonal forecast (operational), ~200 km resolution
 - GCM3/CLASS, 1969-2000 completed, extend to 2004
 - Evaluation of current drought forecast
 - Sensitivity to soil moisture/snow cover anomalies
- Canadian Regional Climate Model (CRCM4/CLASS)
 - Ouranos (Caya): 1958-present, 45 km resolution
 - Additional 5-year sensitivity runs to determine effects of soil moisture anomalies
- Column model for GCM3 (CCCma)
 - DRI collaborators: Hanesiak, Raddatz
 - Sensitivity of atmospheric convection to soil moisture

Soil moisture can be as important as SST in providing predictability

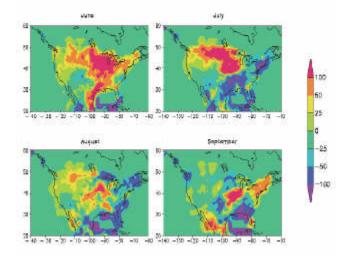
Difference field in GCM-simulated precipitation (summer 1993-1988)


A) Observations

GCM simulations:

B) Control

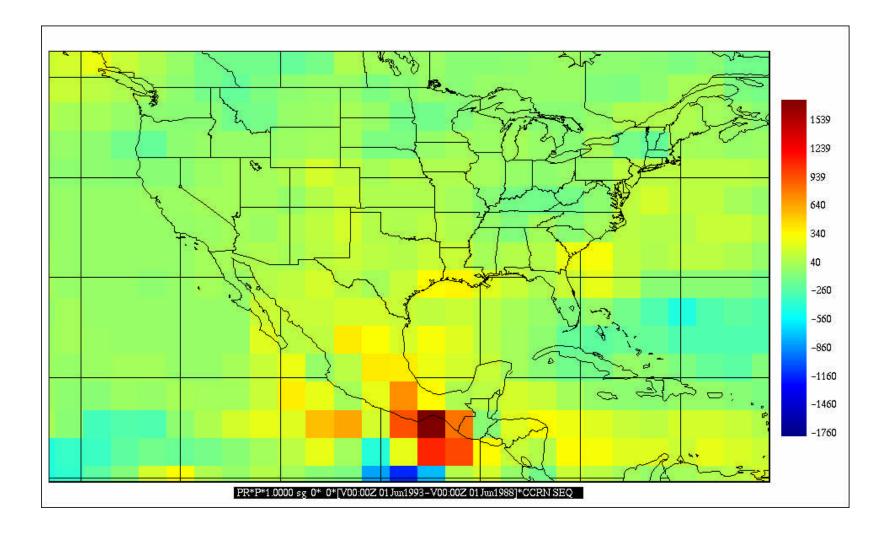
C) Climatological SST


D) Climatological soil moisture

Entekhabi et al. (1999); Suarez et al. (1999)


JJAS 1993-1988 difference in precipitation from observations

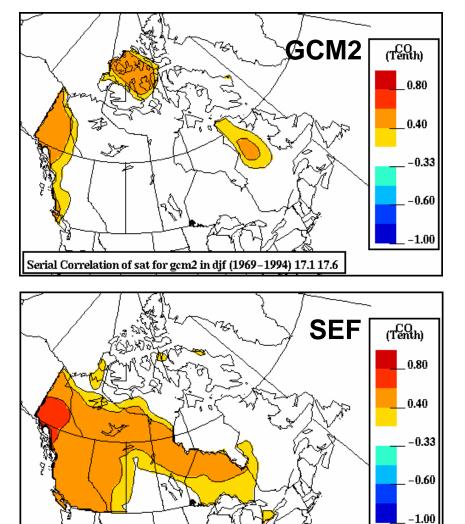
Deserved Ofference in Tetel Precip (mm) for June, July, August, and September (1993-1988)


Yang and Mitchell (2005)

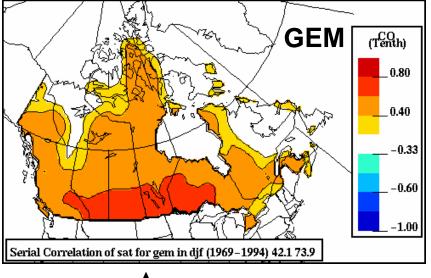
JJAS 1993-1988 difference in precipitation from 30-km NCEP Eta regional model ensemble

Yang and Mitchell (2005)

JJA 1993-1988 difference in precipitation from GCM3/CLASS of Historical Seasonal Forecast Project (HFP)


Supplementary slides

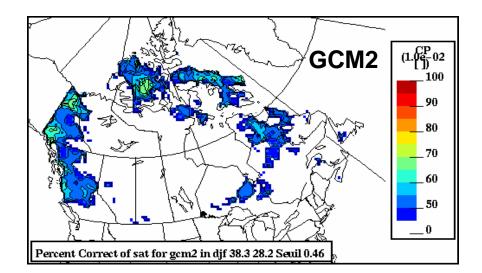
Historical Seasonal Forecast Project (HFP)

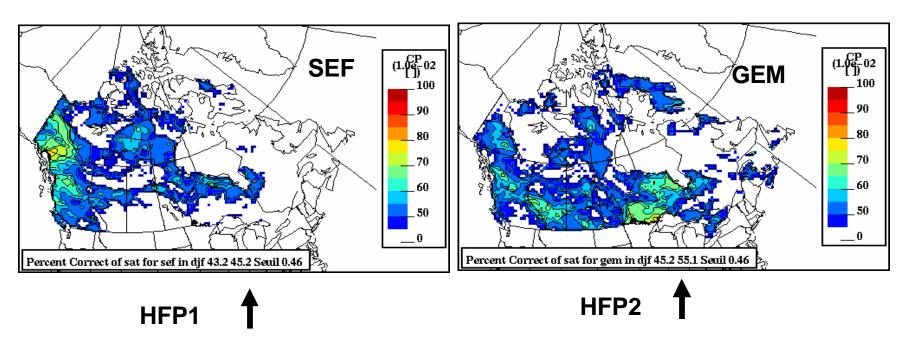

- Lead: Jacques Derome (McGill; PI of CLIVAR)
- McGill, CCCma, RPN, CMC
- Sources of variability
 - Internal: model generated
 - External: only due to SST
- Ensemble approach
 - Multiple runs with perturbed initial conditions
 - Two global models
 - Probabilistic methodology

HFP (continued)

- HFP1
 - Climate model: GCM2 (Force-restore land surface scheme)
 - Weather prediction model: SEF (Force-restore)
 - 26 winters, 1969-95
- HFP2
 - GCM3 (coupled with CLASS)
 - GEM (Force-restore)
 - 30 winters, 1969-99
- CMC uses HFP modelling methodology to produce operational seasonal forecasts
 - Deterministic for public
 - Probabilistic for forecasters (3 categories)

Temporal correlation for surface temperature: Observed *vs* Ensemble Mean for 26 winters (1969-95)




Serial Correlation of sat for sef in djf (1969–1994) 29.6 48.1

HFP2

(From J. Derome)

% of correct deterministic forecasts (3 categories) 1969-1995

(From J. Derome)

Proposed Approach

- Use HFP2 framework
- Modify methodology to include soil moisture initialization
 - Run 1
 - Dec-Jan-Feb forecast for a particular year with previous Nov SST persisted
 - Run 2
 - As Run 1 but with Nov soil moisture initialized from previous seasonal forecast
- Compare Runs 1 and 2
- Multi-year, multi-model ensemble
 - GCM3 coupled with CLASS

Proposed Approach (continued)

- Assess skill/uncertainty of prediction
 - Temperature, precipitation, ...
 - Probabilistic methodology
- Personnel
 - B. Winter, McGill Ph.D. student supervised jointly by Lin and Derome
- Computer resources
 - CMC will provide

Interaction with Other Projects

- CLIVAR 2
 - Will focus on seasonal prediction with coupled atmosphere-ocean models
- Drought Network
 - R. Stewart, PI
 - Includes several MAGS members (Stewart, Lin, Szeto, Gyakum, Leighton, ...)
 - Proposal to be submitted to CFCAS