GRACE Satellite Observations for Drought Monitoring

by

Kenneth R. Snelgrove¹ Sitotaw Yirdaw-Zeleke² Clement Agboma¹

> Workshop Presentation DRI Science Meeting

Winnipeg, January 11-13, 2007

¹ Faculty of Engineering and Applied Science, Memorial University of Newfoundland ² Department of Civil Engineering, University of Manitoba

Overview

Model Development

ØAdding groundwater for Atmospheric Models ØImproved CLASS Model with Groundwater Model

GRACE Gravity Variation

ØAssess changes in moisture storage over Western Canada for Drought studyØHydrological Model Calibration and Validation

Study Region

MEMORIAL UNIVERSITY

Assiniboine Delta Aquifer

Assiniboine Delta Aquifer

Distribution of Surficial Deposits of the Assiniboine Delta Aquifer

L.H. Frost and F.W. Render, 2002

CLASS

UNIVERSITY

Coupling CLASS to Groundwater

Distributed Water Balance

GRACE Terrestrial Moisture Changes

Introduction

- **Twin GRACE Satellites**
- Launch on 2002 March 17
- Flying approximately 220 km apart Altitude of 400-500 km

Newton's Law of Gravitation $F = k \frac{m_1 m_2}{-2}$

Develop geoid from averages over 5 year life Monthly variations related to surface moisture changes

Creation of Earth Geopotential Map

Time-variable geopotential $\delta G(t)$ solution of Laplace Equation

$$dG(t) = \sum_{n=1}^{N} \sum_{m=0}^{n} (dC_{nm}(t) \cos ml + dS_{nm}(t) \sin ml) P_{nm}(\cos q)$$

where: I is the latitude q is the longitude m & n are harmonic degree and order P is Legendre's polynomial

TTEET GRA D_TTRO_20003TE 2002834_ETGEN_GTOO1_SHEGRA FOREBAN _OTTAT205		
COEXT non tiskil atmosphere geovectatial ecofficients averaged over certain time variad		
LARTH 0.19000000002-010.00002-010.00002+07		
SUE 100 1.0 0 00 fully normalized not applicable		
GROOME 0	0 8155351250476-1	
GROOPS 1	07435559999956554	0.000101000003-10.0.00006-00.0.00016+00.021103.080000
GRO 072	0.1575361110956	0.20 4614040275 🕇 0.00006 51 0.00076410 0.2 12,180000
GD10#2 2	0L.77000975E .	0.0000000000000000000000000000000000000
GRIDVI 2	1 0.4)201245903)0-	0.143250006702-0500.0000-000.000000+00021.02.000000
GROOM 2	1 5001/16100011-1	0.4051511786902-01 0.00000-01 0.00010410 020013.000000
480.000 3	0 -1736 - AMDA96 1	0.000 - 000003 0.00008 0.000 8+ 0.0211 3, 80000
GRCOF2 3	1	DU2305407765813 10 0.0000F 00 0.0000F(00.021102.080000
CD1072 3	2 .100601878150E 1	.1807.46605527 LC .0000E CC 0.0007E(C0 03.LC2.780000
GRIDFI)	0.012007200512970-11	0.000000+10.0511292-10.00000-00.000000+10.051102.000000
GRIDNI A	0.009920201111550-1	0.000111000002-11 0.00000-11 0.000010410 021112.100000
GROOM A	1 0.40/31446046321-1	0.0001003174043-01_0.00000-11_0.000010410_020013.100000
GROOPS 4	2 - 1707615200210F-	0.2751354114957-110.00006-11.0.00016410.021113.180000
GROOF2 1	2	0.750:462788003 11 0.00006 11 0.00016.10 021172.180000
GD10#2 L	0.1514142771158	.3183556905532 . 0.0000E CC 0.0002E1C0 031LC2.C80000
GB10#1 0	0.0))7000421020-1	0.0000000000000000000000000000000000000
SRCOKE U	1 2010.14400474-1	20150114001227100000000000000000000000000000
680042 b	2 - 29/6410851016-1	
		UNIVERSIT

Monthly Difference Result

mm of Equivalent water thickness

Water Balance Methods

Atmospheric Moisture Budget:

 $<\mathbf{P}-\mathbf{E}>_{a} = -<\partial q/\partial t> -<\mathbf{\tilde{N}} \bullet \mathbf{Q}>$

 $\begin{array}{l} \mbox{Where: } (P\text{-}E) = \mbox{difference between precipitation and evapotranspiration,} \\ q = \mbox{the vertically-integrated vapour mass or precipitable water,} \\ \tilde{N} \cdot Q = \mbox{the moisture flux divergence,} \\ Q = qV ; V \mbox{is wind speed} \end{array}$

Hydrologic Water Budget:

$$\langle P - E \rangle_{h} = \langle \partial S / \partial t \rangle + \langle R \rangle$$

where: S = surface water storage R = basin runoff

Grace Result := $\langle \partial S / \partial t \rangle + \langle \partial q / \partial t \rangle$

Water Balance Methods

q - Atmospheric Storage

Data Source: CMC 4x Daily Analysis

$\tilde{N} \cdot Q$ - Atmospheric Runoff

Data Source: CMC 4x Daily Analysis

Alternate $\tilde{N} \cdot \boldsymbol{Q}$ - Calculation

Atmospheric and Hydrologic Basin Change in Storage For Water Years 2002-2004 (Mackenzie River Basin)

Atmospheric, Hydrologic and GRACE based Change in Storage relative to mean Geopotential For Water Years 2002-2004 (Mackenzie River Basin)

Comparison of Precipitation minus Evaporation with month-to-month GRACE storage coupled with measured runoff for Saskatchewan River basin. The measured runoff is taken at the outlet of the river basin at Grand Rapids.

GRACE and Surface storage relative to mean earth's geopotential for Saskatchewan River basin. The surface storage is computed as:

$$S_{n} = S_{n-1} + \int_{t_{1}}^{t_{2}} (P - E - R) dt$$

UNIVERSITY