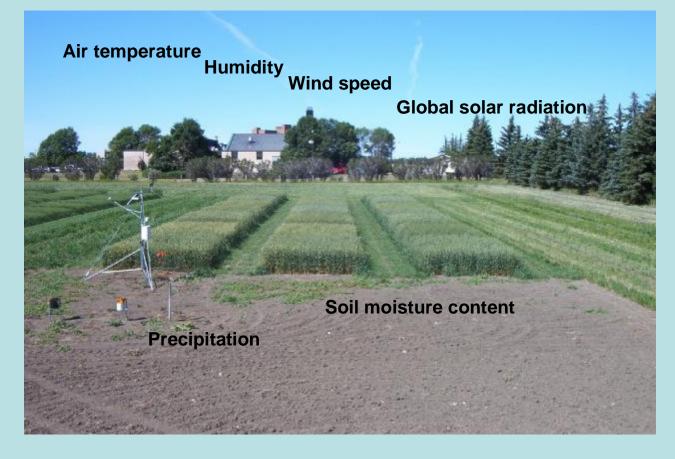

Quantifying Agricultural Drought: An Assessment Using Western Canadian Spring Wheat

P.R. Bullock¹, G.J. Finlay¹, C.K. Jarvis¹, H.D. Sapirstein², H. Naeem², I. Saiyed¹ ¹Department of Soil Science ²Department of Food Science University of Manitoba Winnipeg, Canada

Background

- Precipitation indices alone may not provide the most accurate indications of drought impacts on crops.
- Agricultural drought is a function of both moisture supply and demand.
- Which combination of moisture variables most accurately quantify the impact of drought on spring wheat yield and quality?

Above normal precipitation (% of normal values greater than 100) in areas where soil moisture capacities are near 100% and/or areas where poor internal drainage is a problem can lead to significant limitations for crop production. As well, areas having much below normal precipitation (% of normal values less than 100) can experience drought conditions for periods of the growing season.



Field Locations

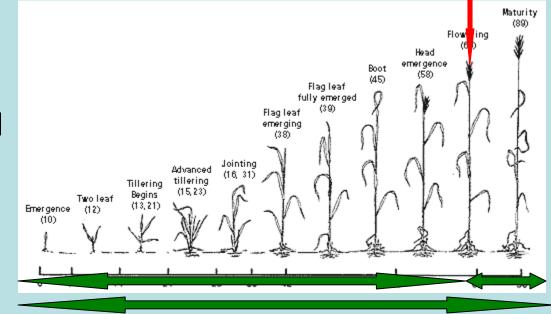
- Six varieties were sown in a randomized complete block design with three replicates.
- Detailed weather and soil moisture measurements were made at each location.

Moisture Indicators Evaluated

- **Prec** total precipitation (daily precipitation)
- %Nor percent of normal precipitation (precipitation normals)
- **SPI** Standardized Precipitation Index (long term monthly precipitation)
- **SimETo** Simple Reference Evapotranspiration (max-min temp, latitude)
- **PMETo** Penman-Monteith Reference ET (net radiation, humidity, wind)
- **SimETc** Simple Standard Evapotranspiration (daily crop coefficient)
- **PMETc** Penman-Monteith Standard ET (daily crop coefficient)
- **SimRes** Simple Residual Water (soil moisture+precipitation minus ETc)
- **PMRes** Penman-Monteith Residual Water
- **SimETa** Simple Actual Evapotranspiration (2-layer soil moisture model)
- **PMETa** Penman-Monteith Actual Evapotranspiration (as above)
- BLSMETp, BLSMETa, BLSMRes –

coupled boundary-layer soil moisture model (upper atmosphere wind, humidity and pressure)

Time Periods Evaluated


• Monthly

- May, Jun, Jul, Aug
- May-Jun, Jun-Jul, Jul-Aug
- May-Jul, Jun-Aug, May-Aug
- GS Growing season (Planting-Maturity)
- VP Vegetative Period (Planting-Anthesis)
- FP Filling Period (Anthesis-Maturity)

FACULTY

CILITIERA

AND FOOD SCIENCES

Crop Response Variables

- Grain
 - yield
 - protein content
 - thousand-kernel weight
- Flour
 - extraction rate
 - protein content
 - total pentosan content
- Dough
 - farinograph absorption
 - farinograph dough development time
 - farinograph stability
- Bread

FACULTY

I C III I T II R A

AND FOOD SCIENCES

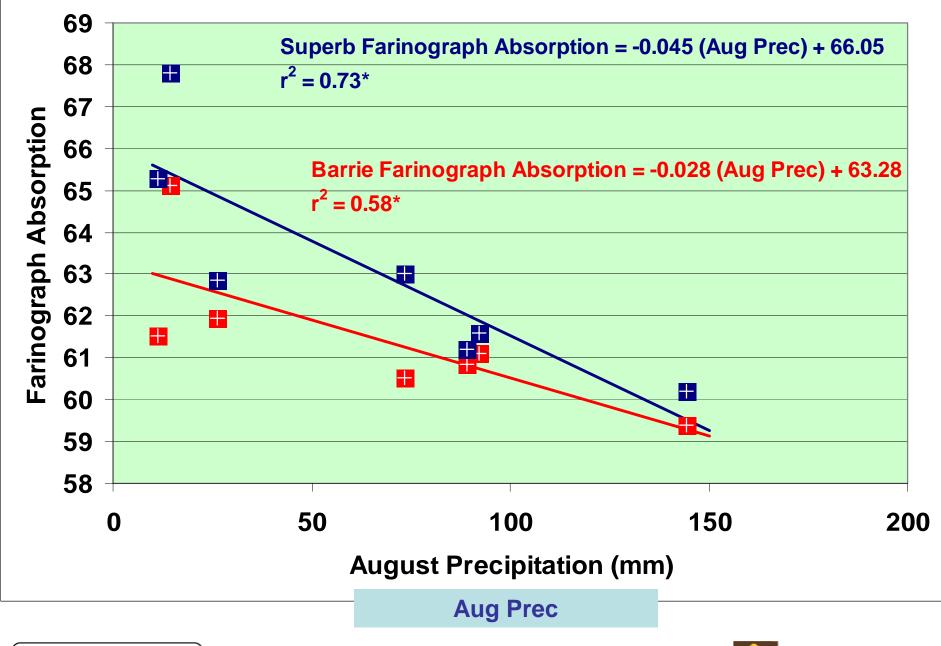
loaf volume

Preliminary Results

- There were 341 significant (95%) correlations between the 20 crop response variables and the various moisture indices.
- Barrie Farinograph dough development time was significantly correlated with 40 different moisture indices.
- Barrie flour extraction level was not significantly correlated to any moisture index.

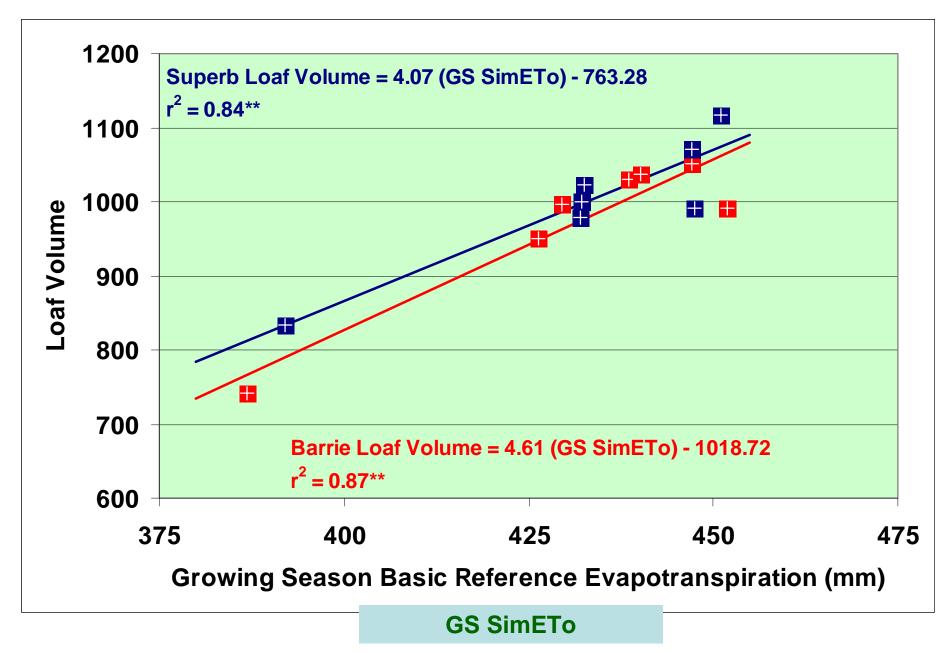
FACULTY OF Agricultural And Food Sciences

	Variety	Moisture Index	r		
	Superb	Aug Prec	-0.76 *		
		Aug %Nor	-0.81 *		
		FP %Nor	-0.77 *		
		Aug SPI	-0.82 *		
		May BasETc			
Example:		<u>May-Jun BLSMETp</u>	0.95 **		
·	* Significant at 95% ** Significant at 99%				
Flour					
Pentosan	Variety	Moisture Index	r		
Content	Barrie	May-Jun BasETc	0.76 *		
		May BasETa	0.76 *		
		May PMETa			
		Jun BLSMETp			
		0.91 **			
	* Significant	at 95% ** Significant at 99%			
FACULTY	OF	European Geosciences Union			

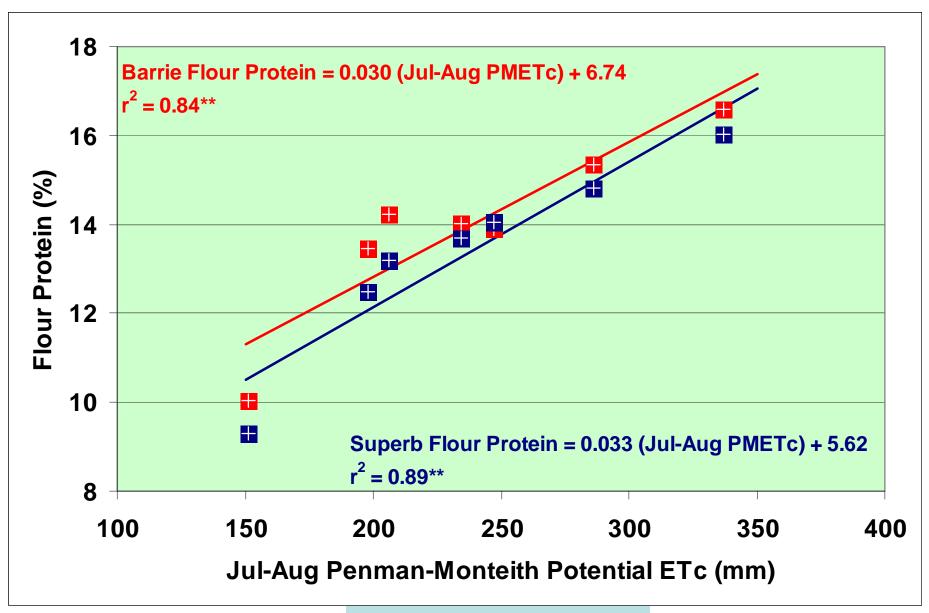


Preliminary Results

• Least complex significantly correlated moisture index


	Barrie		Supe	erb
Crop Variable	Moisture Index	r	Moisture Inde	ex r
Yield	Jul PMETo	-0.80 *	Jul SimETo	-0.80 *
Protein	GS SimETo	0.90 **	GS SimETo	0.90 **
1000 ker wt	May BLSMETa	0.78 *	FP SimETc	0.76 *
Flour extr		ns	May SimETa	0.79 *
Flour prot	GS SimETo	0.86 *	GS SimETo	0.91 **
Flour pent	May-Jun SimET	c 0.76 *	Aug Prec	-0.76 *
Far absorp	Aug Prec	0.76 *	Aug Prec	0.85 *
Far DDT	VP SimETo	0.79 *	GS SimETo	0.79 *
Far stability	May-Jun Prec	-0.76 *	Jul SimETo	0.84 *
Loaf Vol	GS SimETo	0.93 **	GS SimETo	0.92 **

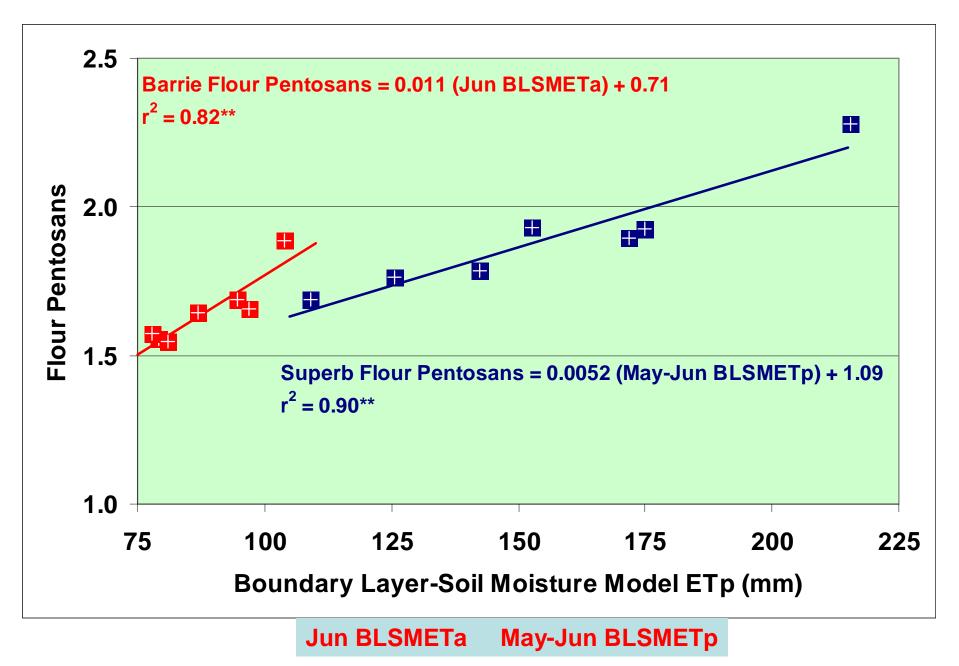
* Significant at 95% ** Significant at 99%



Preliminary Results

• Moisture index with the highest absolute correlation coeff.

	Barrie		Superb	
Crop Variabl	e Moisture Index	r	Moisture Index	r
Yield	FP BLSMETa	0.87 *	Jul-Aug BLSMETp	-0.85 *
Protein	GS SimETo	0.90 **	Jul-Aug PMETc	0.94 **
1000 ker wt	May BLSMET a	0.78 *	FP SimETc	0.76 *
Flour extr	May-Jun BLSMRes	-0.69 ^{ns}	May BasETa	0.79 *
Flour prot	Jul-Aug PMETp	0.92 **	Jul-Aug PMETc	0.94 **
Flour pent	Jun BLSMETa	0.91 **	May-Jun BLSMETp	0.94 **
Far absorp	May PMETa	0.90 **	May-Jun PMETc	0.88 **
Far DDT	VP PMETc	0.95 **	VP SimETo	0.90 **
Far stability	Jul SimETc	0.93 **	VP SimETc	0.92 **
Loaf Vol	GS SimETo	0.93 **	Jul-Aug PMETc	0.94 **

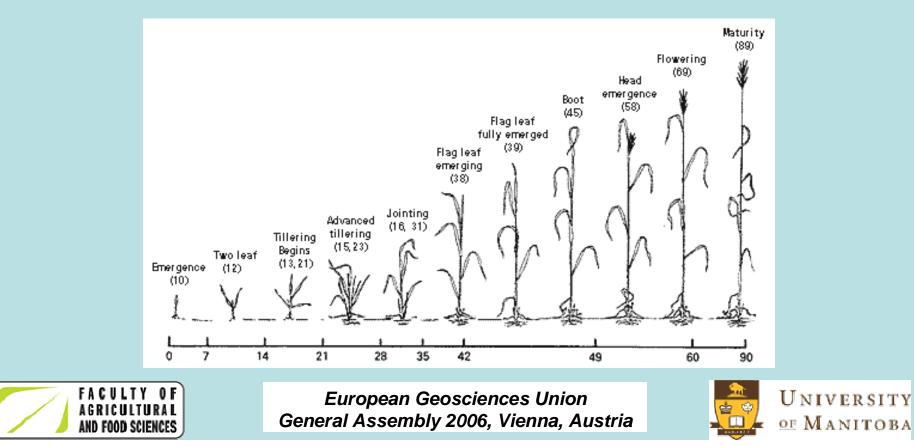

* Significant at 95% ** Significant at 99%

Jul-Aug PMETc

F A C U L T Y O F A G R I C U L T U R A L AND FOOD SCIENCES

- Precipitation and precipitation-based moisture indices were not significantly correlated to spring wheat yield nor most wheat quality parameters.
- There was more frequently a significant correlation between water demand variables and wheat response.

- Simple reference evapotranspiration was significantly correlated to several important wheat quality measures including grain protein, flour protein and loaf volume.
- More data points are needed to ensure the relationships are real.


- More sophisticated moisture indices requiring additional weather and soil data frequently had higher correlation coefficients to many crop response variables.
- Is it worthwhile collecting the additional data for these indices???

 Phenological growth stage rather than monthly moisture indices in some cases had higher correlation coefficients to crop response variables and may be a means to improve crop outcome predictions.

Acknowledgments

Environnement Canada

CFCAS Canadian Foundation for Climate and Atmospheric Studies