Characterizing the Climatological Nature of the 1999-2005 Drought in the Canadian Prairies: Data Sources and Issues

Alison Meinert, Barrie Bonsal and Elaine Wheaton 2008 DRI Workshop Calgary, AB January 17-19, 2008

Research Objectives

Quantify the extent and severity of the 1999-2005 Canadian Prairie drought at a variety of spatial and temporal scales.

- Use drought indices to examine the spatial, temporal patterns, and intensity of the droughts
- Compare different methodologies to calculate the drought indices
- Relate drought patterns to agricultural and hydrological impacts
- Develop methods to document the dynamics of drought migrations

Study Area

Drought Indices

- Percent of Normal
- Deciles
- Standardized Precipitation Index (SPI)
- Palmer Drought Severity Index (PDSI)
- Palmer Z Index
- (Palmer Moisture Anomaly Index)
- Palmer Hydrological Severity Index (PHSI)
- Surface Water Supply Index (SWSI)
- Crop Moisture Index (CMI)
- Soil moisture anomaly index

- Reclamation Drought Index
- Computed soil moisture
- Rainfall Anomaly Index (RAI)
- Drought Area Index (DAI)
- Total water deficit
- Effective Drought Index (EDI)
- Bhalme-Mooley Drought Index (BMDI)
- Keetch-Byram Drought Index (KBDI)
- NOAA Drought Index
- Drought Monitor Short-term blend
- Drought Monitor Long-term blend
- Climate Moisture Index

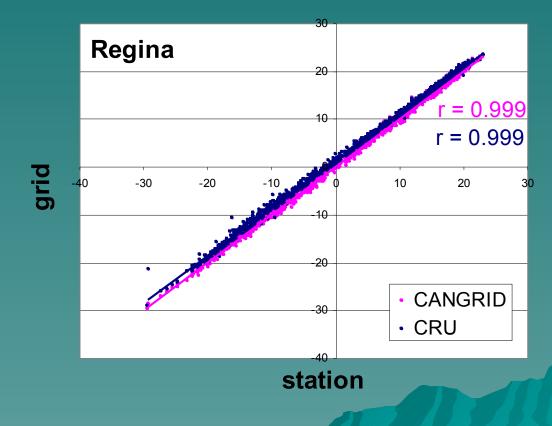
Drought Indices

- Standard Precipitation Index (SPI)
- Palmer Drought Severity Index (PDSI)
- Palmer Z-Index
- Crop Moisture Index
- Climate Moisture Index (CMI)
- Soil Moisture
- Evapotranspiration

Data Requirements

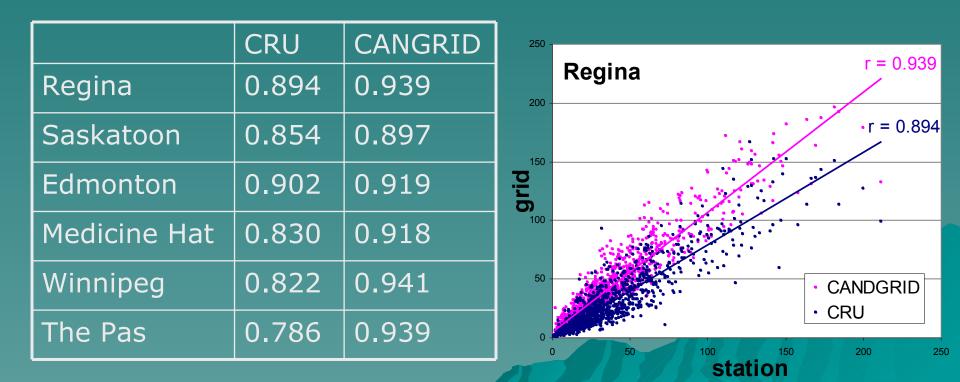
- Gridded datasets of temperature and precipitation
 - Canada
 - Canadian Gridded Climate Data (CANGRID, Environment Canada) – 50km resolution
 - North America
 - Climate Research Unit (CRU TS 2.1, Mitchell and Jones, 2005) – 0.5 degree resolution

 ANUSPLINE (McKenney et al. 2006) -10km resolution


What is the reliability of the gridded data?

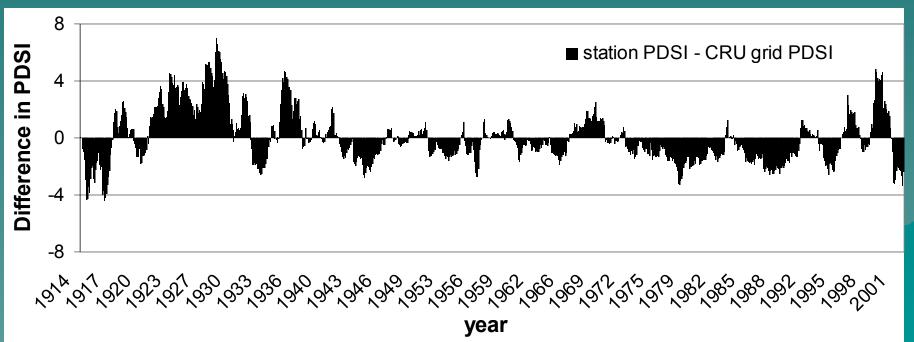
 Comparison of 6 stations with 6 corresponding grid points (CRU and CANGRID)

Temperature Data

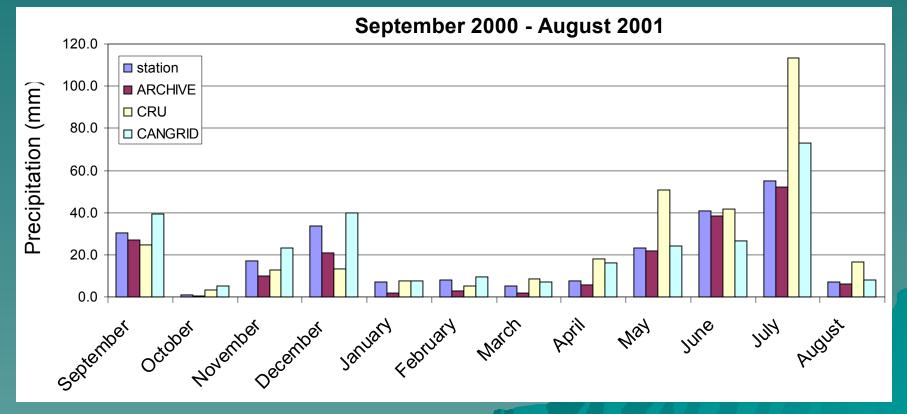

- Correlation coefficients above 0.99 for each dataset
 - Based on monthly mean temperature from 1914-2002

Precipitation Data

 Correlation coefficients were 2-16% lower using the CRU data


 Based on mean monthly precipitation from 1914-2002

Palmer Drought Severity Index (PDSI)


 Calculated the PDSI based on station values and on CRU gridded values for the 6 locations

Saskatoon

2001 Precipitation

 In July 2001 there was a difference of over 60mm between the station and CRU gridded values

Saskatoon – Ranked 12-month SPI

	STATION	CRU	CANGRID
2001	1	39	2
1919	2	3	5
1924	3	4	3
1933	4	10	6
1929	5	2	1
2002	6	14	29
1998	7	8	25
1930	8	24	8
1952	9	11	19
1984	10	38	32

 12-month SPI based on 2001 Agricultural year (September 2000- August 2001)

Drought Impacts

- Relate indices with observed drought impacts
 - Crop yields
 - Pasture growth
 - Water levels (dugouts)
 - Aerosols (dust storms)

 These comparisons will provide an indication of the usefulness/applicability of drought indices

Examples of future work and links with other DRI researchers

- Continued assessment of datasets
- Calculate drought indices (PDSI and SPI) and compare these results to previous work over the prairies during the 1999-2005 drought
 - PFRA Drought Watch
 - Indices calculated by John Hanesiak and research team
- Relate drought patterns to agricultural and hydrological impacts
- Develop methods to document the dynamics of drought migrations