
Prairie Water and Energy Cycling: Budget Assessments, Modeling and Process Diagnostics

Kit Szeto Climate Research Division, Environment Canada

Why Study Water and Energy Cycling?

WATER AND ENERGY CYCLING

Study Foci:
Budget assessments
Modeling
Process diagnostic studies

Budget Assessments Objectives:

- To develop comprehensive baseline climatologies of W +E budgets for the Prairie region by using various quasiindependent datasets
- To assess the relative merits of the various datasets in representing the budgets and to explore implications of the assessment results to the use of these datasets in drought monitoring, model validation and process study applications

Water and Energy Budgets

Atmospheric Water

$$\frac{\partial Q}{\partial t} = E - P + MC + RESQ$$

Surface Water $\frac{\partial W}{\partial t} = P - E - N + RESW$

Atmospheric Temperature

$$C_{p}\frac{\partial\{T\}}{\partial t} = QR + LP + SH + HC + REST$$

Surface Temperature

$$Cv\frac{\partial\{Ts\}}{\partial t} = QRS - LE - SH + G$$

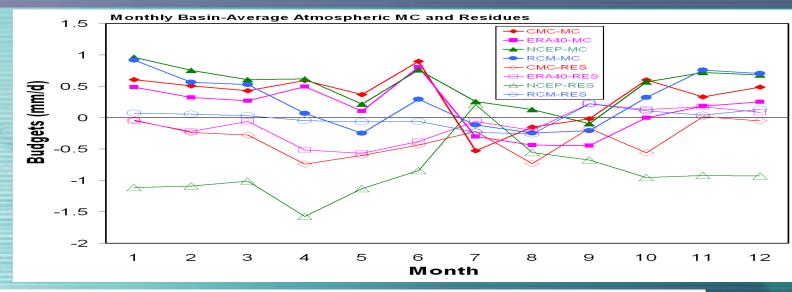
Source: John Roads

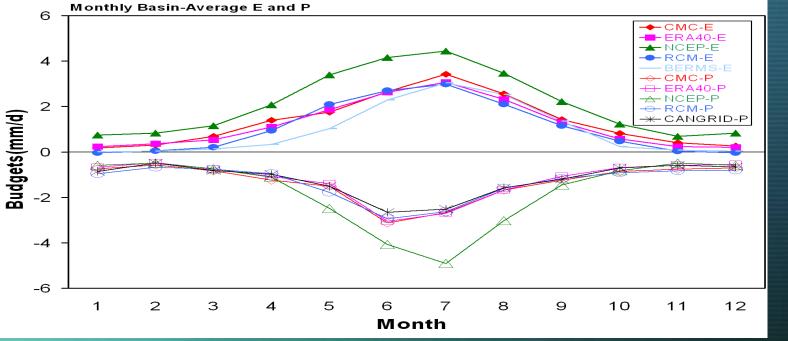
O=Atmospheric Precipitable Water, mm W=Surface Water (M+S), mm M=Soil Moisture, mm S=Snow, mm T=Atmospheric Temperature, K Ts=Surface Skin Temperature, K T2=Surface Air Temperature (at 2m), K E=Evaporation, mm/day P=Precipitation, mm/day MC=Moisture Convergence, mm/day N=Runoff mm/day LP=Latent Heat of Condensation, W/m**2 SH=Sensible Heat (which is positive upward), W/m**2 HC=Dry Static Energy Convergence, W/m**2 LE=Latent Heat of Evaporation (which is positive upward), W/m**2 OR=Atmospheric Radiative Heating (which is negative), W/m**2 QRS=(NSW+NLW)=Surface Radiative Heating, W/m**2 NSW=Net Shortwave Radiation at the Bottom of Atmosphere (BOA), W/m**2 NLW=Net Longwave Radiation at the Bottom of Atmosphere (BOA), W/m**2 NSW (0)=Net Shortwave Radiation at the Top of Atmosphere (TOA), W/m**2 NLW (0)=Net Longwave Radiation at the Top of Atmosphere (TOA), W/m**2 RESO=Atmospheric Residual Water Forcing, mm/day RESW=Surface Residual Water Forcing, mm/day REST=Atmospheric Residual Dry Static Energy Forcing, W/m**2 G=Surface Residual Temperature Forcing, W/m**2

Datasets

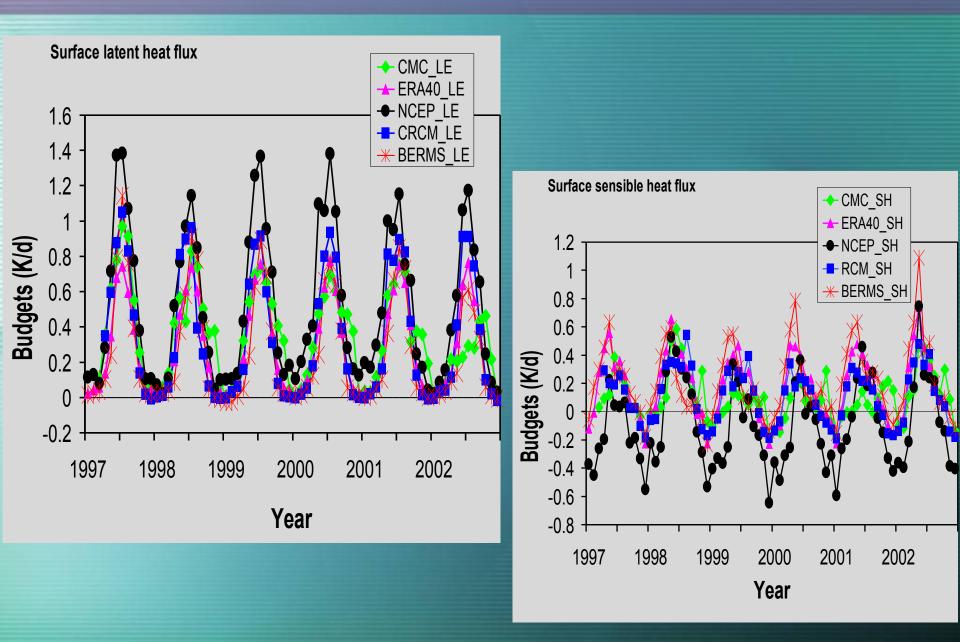
Local (L), regional (R) and global (G) observations

Parameter	Source		Resolution	Coverage Period
	Rawinsondes	; (L)	Sites	Various - Current
Precipitable Water	GVAP/NVAP	(G)	1 deg	1988-1999
				1978 Dec - 2003 Mar
Snow	SSMI	(R)	25 km	(Dec-Mar)
Surface Air Temperature	CANGRID	(R)	50 km	1895 - 2003 Dec
Atmospheric Enthalpy	Rawinsondes	; (L)	Sites	Various - Current
	CANGRID	(R)	50 km	1895 - 2003 Dec
	CMAP	(G)	2.5 deg	1979 - 2003 Sep
Precipitation	GPCP	(G)	2.5 deg	1979 – 2003 Dec
				1913 - Current (The
Discharge	WSC	(L)	sites	Pas)
	ISCCP FD	(G)	280 km	1983 Jul - 2001 Jun
Radiative Fluxes	BERMS	(L)	Sites	1994 - Current
Sensible/Latent Heat				
Flux	BERMS	(L)	Sites	1994 - Current
	Surface Obs			
Cloud Cover	(L/R)		Sites	Various - Current


Global (G) and regional (R) analysis and model datasets

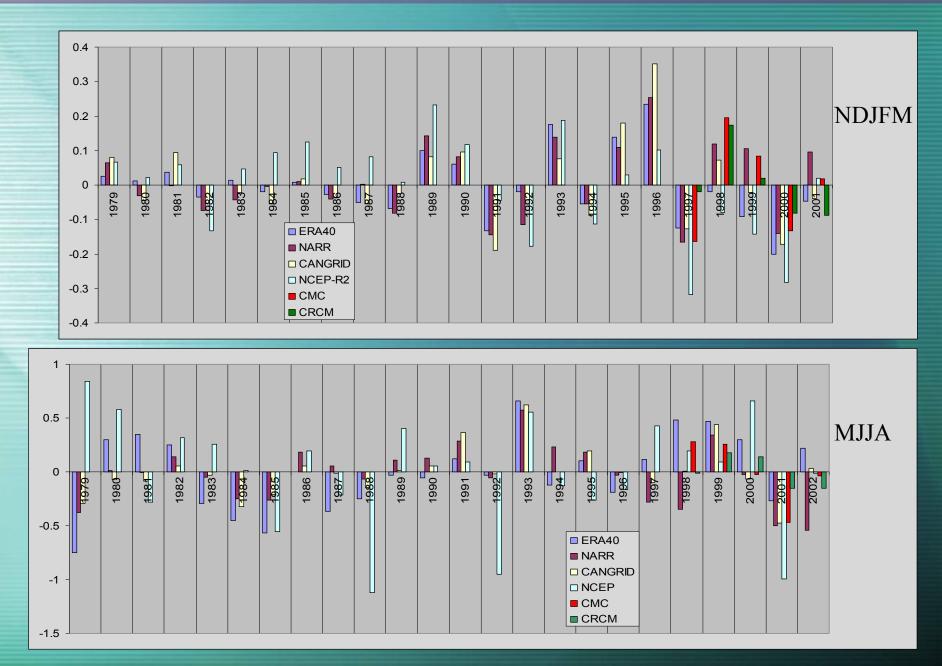

Dataset	Resolution	Coverage period
CRCM (R)	51 km	1997 Apr - 2003 Dec
CMC (R)	35/24 km	1997 Mar - Current
NARR (R)	32 km	1979 Jan - Current
NCEP-R2 (G)	2.5 deg	1979 Jan - Current
ERA-40 (G)	2.5 deg	1957 Sep - 2002 Aug

Data\Para	Q	М	SWE	T2m	н	Р	E	МС	Ν	НС	SH	RESQ	REST
NCEP	10.63	318.3	14.95	276.1	2.26	1.73	-2.09	0.51	-0.53	0.34	-0.15	-0.88	0.23
СМС	10.94	224.6	15.55	275.8	2.30	1.32	-1.32	0.34	-0.01	0.17	0.12	-0.34	0.21
CRCM	10.68	218.8	30.29	273.7	2.30	1.33	-1.05	0.28	-0.31	0.41	0.12	0.00	-0.01
ERA-40	10.85	382.3	15.09	276.6	2.27	1.22	-1.20	0.14	-0.36	0.14	0.13	-0.16	0.35
Reg Obs	10.64		23.84	276.2	2.31	1.20	-0.93		-0.12		0.21		
Globl Obs	10.81					1.00							
						1.07							
Average	10.76	286.0	19.9	275.7	2.29	1.30	-1.32	0.32	-0.27	0.27	0.09	-0.35	0.19
ERA Avg 79-98	10.84	383.2	15.2	276.0	2.27	1.21	-1.21	0.26	-0.38	0.07	0.14	-0.26	0.40
Average(MRB)	9.27	276.1	44.5	270.0	2.33	1.32	-1.14	0.55	-0.58	0.39	-0.01	-0.29	0.16
%Error	1.18	27.53	34.56	0.40	0.95	18.61	34.59	48.27	76.89	49.35	160		
%Error(MRB)	4.51	14.68	36.96	0.55	1.29	18.71	38.08	17.42	48.34	22.42	3475		
Data\	LP	QRS	QR	ΤΟΑ	ΤΟΑ	ΤΟΑ	BOA	BOA	BOA	BOA	Cloud	RESW	RESG
Data∖ Parameter	LP	QRS	QR	TOA SWD		TOA LWU				BOA LWD	Cloud cover	RESW	RESG
	LP 0.46	QRS 0.56	QR -0.88							LWD		RESW 0.89	RESG -0.15
Parameter				SWD	SWU	LWU	SWD	LWU	รพบ	LWD	cover		
Parameter NCEP	0.46	0.56	-0.88	SWD 2.56	SWU 0.81	LWU 2.08	SWD 1.60	LWU 3.10	SWU 0.36	LWD 2.42	cover 43	0.89	-0.15
Parameter NCEP CMC	0.46 0.36	0.56 0.46	-0.88 -0.85	SWD 2.56 2.49	SWU 0.81 0.85	LWU 2.08 2.03	SWD 1.60 1.46	LWU 3.10 3.05	SWU 0.36 0.36 0.37	LWD 2.42 2.41	cover 43 48 47	0.89 0.00 0.03	-0.15 0.02
Parameter NCEP CMC CRCM	0.46 0.36 0.35	0.56 0.46 0.43	-0.88 -0.85 -0.87	2.56 2.49 2.54	0.81 0.85 0.99	2.08 2.03 1.99	SWD 1.60 1.46 1.47	LWU 3.10 3.05 2.93	SWU 0.36 0.36 0.37	LWD 2.42 2.41 2.26 2.56	cover 43 48 47	0.89 0.00 0.03	-0.15 0.02 -0.03
Parameter NCEP CMC CRCM ERA-40	0.46 0.36 0.35	0.56 0.46 0.43 0.53	-0.88 -0.85 -0.87	2.56 2.49 2.54	0.81 0.85 0.99	2.08 2.03 1.99	SWD 1.60 1.46 1.47 1.39	LWU 3.10 3.05 2.93 3.13	SWU 0.36 0.37 0.29	LWD 2.42 2.41 2.26 2.56	cover 43 48 48 47 59	0.89 0.00 0.03	-0.15 0.02 -0.03
Parameter NCEP CMC CRCM ERA-40 Reg Obs	0.46 0.36 0.35	0.56 0.46 0.43 0.53 0.56	-0.88 -0.85 -0.87 -0.94	SWD 2.56 2.49 2.54 2.56	SWU 0.81 0.85 0.99 0.88	2.08 2.03 1.99 2.10	SWD 1.60 1.46 1.47 1.39 1.35	LWU 3.10 3.05 2.93 3.13 2.91	SWU 0.36 0.37 0.29 0.15	LWD 2.42 2.41 2.26 2.56 2.43	cover 43 48 47 59 60	0.89 0.00 0.03	-0.15 0.02 -0.03
Parameter NCEP CMC CRCM ERA-40 Reg Obs Globl Obs	0.46 0.36 0.35 0.33	0.56 0.46 0.43 0.53 0.56 0.51	-0.88 -0.85 -0.87 -0.94 -0.87	SWD 2.56 2.49 2.54 2.56 2.55	SWU 0.81 0.85 0.99 0.88 0.95	LWU 2.08 2.03 1.99 2.10 1.95	SWD 1.60 1.46 1.47 1.39 1.35 1.40	LWU 3.10 3.05 2.93 3.13 2.91 3.14	SWU 0.36 0.37 0.29 0.15 0.31	LWD 2.42 2.41 2.26 2.56 2.43 2.57	cover 43 48 47 59 60 68	0.89 0.00 0.03 0.34	-0.15 0.02 -0.03 -0.07
Parameter NCEP CMC CRCM ERA-40 Reg Obs Globl Obs Average	0.46 0.36 0.35 0.33	0.56 0.46 0.43 0.53 0.56 0.51 0.51	-0.88 -0.85 -0.87 -0.94 -0.87 -0.87	SWD 2.56 2.49 2.54 2.56 2.55 2.55	SWU 0.81 0.85 0.99 0.88 0.95 0.90	LWU 2.08 2.03 1.99 2.10 1.95 2.03	SWD 1.60 1.46 1.47 1.39 1.35 1.40 1.45	LWU 3.10 3.05 2.93 3.13 2.91 3.14 3.04	SWU 0.36 0.37 0.29 0.15 0.31 0.31	LWD 2.42 2.41 2.56 2.43 2.57 2.44	<pre>cover 43 48 48 47 59 60 60 68 54</pre>	0.89 0.00 0.03 0.34	-0.15 0.02 -0.03 -0.07 -0.06
Parameter NCEP CMC CRCM ERA-40 Reg Obs Globl Obs Average ERA Avg79-98	0.46 0.36 0.35 0.33 0.33	0.56 0.43 0.53 0.56 0.51 0.51 0.53	-0.88 -0.85 -0.87 -0.94 -0.87 -0.88 -0.88	SWD 2.56 2.49 2.54 2.56 2.55 2.54 2.56	SWU 0.81 0.99 0.88 0.95 0.90 0.87	LWU 2.08 2.03 1.99 2.10 1.95 2.03 2.09	SWD 1.60 1.46 1.39 1.35 1.40 1.45 1.38	LWU 3.10 3.05 2.93 3.13 2.91 3.14 3.04 3.10	SWU 0.36 0.37 0.29 0.15 0.31 0.31 0.28	LWD 2.42 2.41 2.26 2.56 2.43 2.57 2.44 2.54	cover 43 48 47 59 60 68 54 59	0.89 0.00 0.03 0.34 0.34 0.32 0.39 0.25	-0.15 0.02 -0.03 -0.07 -0.06 -0.06


All water storage terms are in mm, T2m in K, enthalpy (H) in 10^9J/km2, moisture fluxes in mm/day energy fluxes in K/day.

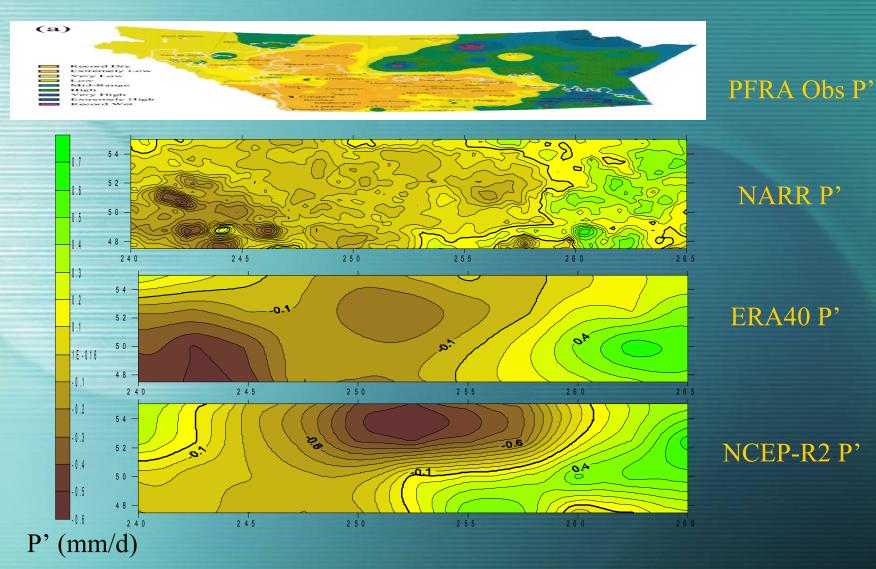
Variability among Budgets Assessments - Annual Cycles of Atmospheric Water Budgets

Variability among Budgets Estimatescont.... Surface SH and LE near BERMS Site

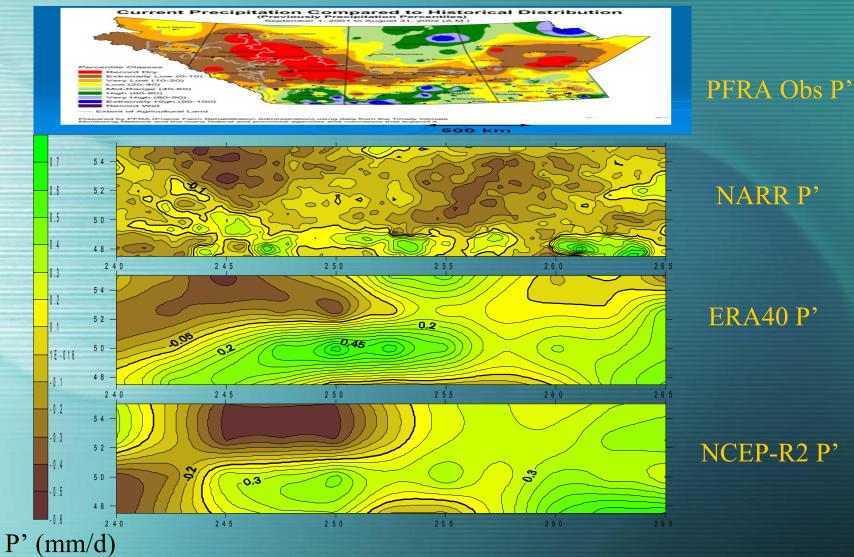


Summary of mean budget results

- Some estimates of budget components compare well to obs but residuals in the balance are often as large as the budget components in all datasets
- Budgets from analysis datasets based on more "modern" assimilation systems (CMC, NARR, ERA-40) compared the best to obs
- * NCEP-R2 over-predicts warm-season water cycling for the region
- * Strong cold bias in CRCM affects its capability to accurately simulate drought in the region
- * Water closure problem (MC >> obs discharge)


Szeto, *J. Met. Soc. Jap.* 2007, 167-186. Szeto et al., *J. Hydromet.*, 2008, 96-115.

Variability among Budget Estimates - Seasonal P anomaly Timeseries


Spatial Variability of P Anomalies: Observed vs Analyzed

$0\overline{0-01WY}$

Spatial Variability of P Anomalies: Observed vs Analyzed

01-02WY

Regional climate model simulations of the 1999-2005 Prairie drought:

A model inter-comparison study

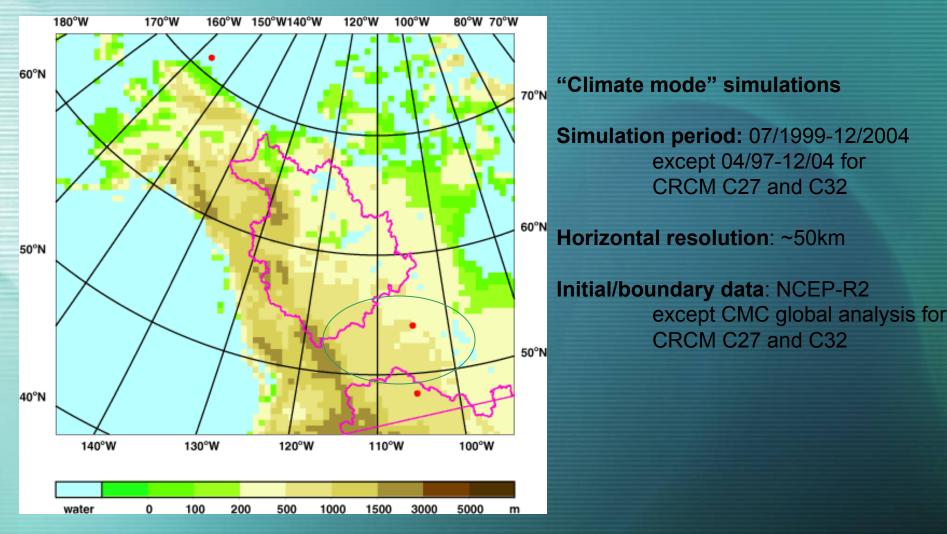
K.K. Szeto¹, B. Rockel², K.H. Szeto³, R.E. Stewart⁴, C. Jones⁵, M. MacKay¹, J. Roads⁶ and L. Wen⁴

¹ Env. Canada ² GKSS ³ U. Waterloo ⁴ McGill U. ⁵ UQAM

⁶ Scrinns Inst of Oceanography

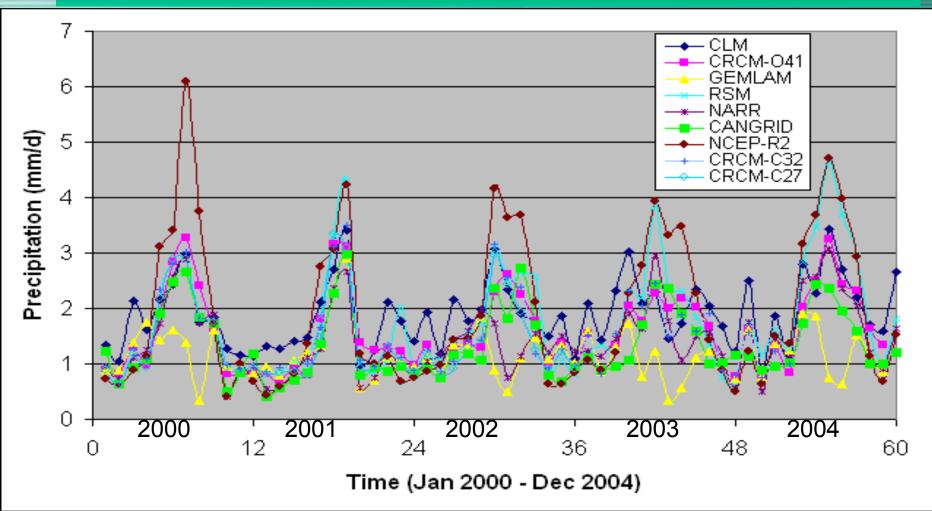
Objectives of Study

• To assess the capability and readiness of dynamical predictions of Prairie droughts through a critical evaluation of simulations of the 1999-05 drought with several state-of-the-art RCMs

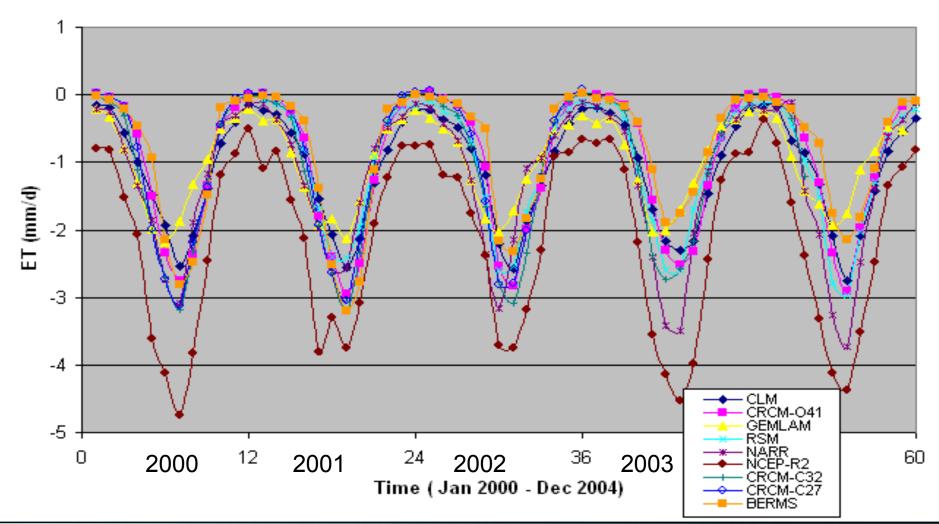

 To assess the viability of using RCMs as tools for studying Prairie droughts

• To identify major problems that affected the simulations in the different models and to diagnose their causes

Models


Model	Description	Institute	Notes
CRCM-041	Canadian Regional Climate Model	OURANOS	V. 4.1 – CGCMB, CLASS 2.7, K- F
	66 66 66	EC	CGCM3 - CLASS 2.7, Z-M
	66 66 66	EC	CGCM3 - CLASS 3.2, Z-M
	Global Environmental	EC	
GEMLAM	Multiscale Limited Area Model		RPN, ISBA, K-F, Sunq
CLM	Climate version of the "Lokal Modell"	GKSS (Germany)	TERRA3D, K-F
RSM	Regional Spectral Model	ECPC (US)	GSM, Noah, A-S

Simulations


Model domain with elevation

Monthly Timeseries of Areal Mean Precip

- All models captured the low precip of 2000/2001 winter and 2001 summer
- NCEP-R2 and sometimes RSM severely overpredict summer P
- GEMLAM and occasionally NARR severely underpredicts summer precip
- CLM, and to a lesser degree, most models, overpredict winter P (obs could be wrong!)
- CRCM P agrees well with observation, including the general interannual variability of P during the drought
- -dependencies of model bias on large-scale conditions

Monthly Timeseries of ET

- Observed Interannual variability of ET captured quite well by most models
- When compared to BERMS data, most models (except GEMLAM) over-predict ET during the later drought period
- NCEP-R2 severely over-predicts ET
- NARR over-predicts summer ET during 03/04
- GEMLAM under (over)-predicts summer (winter) ET

Summery

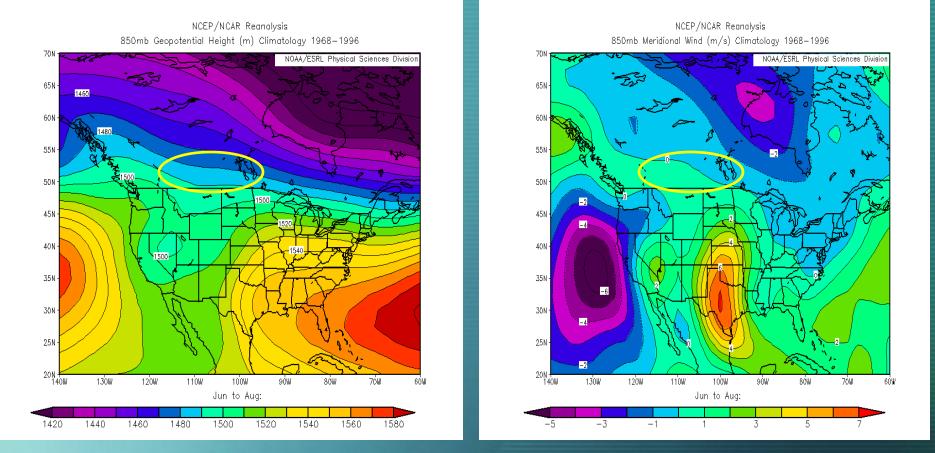
- All models captured, to varies degree, the meteorological drought conditions developed during 2000/2001 and the subsequent drying of the surface
- All models also captured the gradual termination of the drought after 2002
- The quality of the predictions are impaired by different deficiencies in the models that need to addressed before improved drought predictions can be expected from the models

Water and Energy Cycling Processes

Main issues of interest:

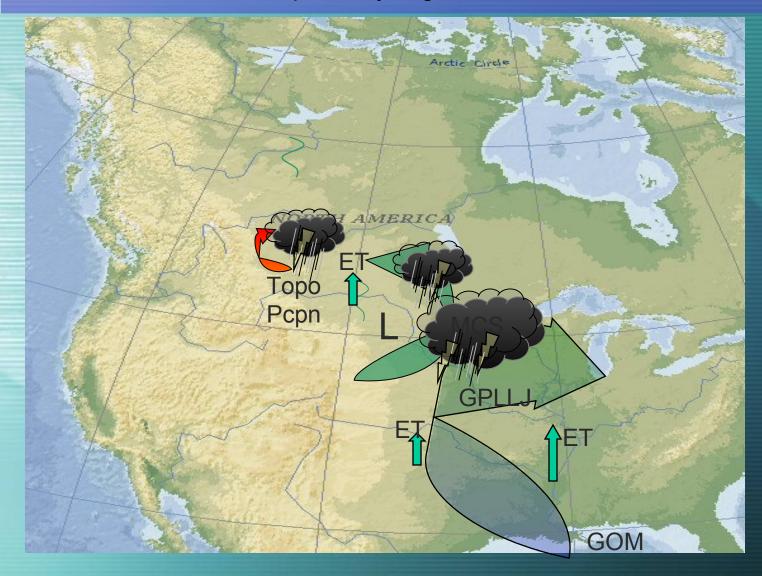
What intermediate physical mechanisms are involved in determining the hydrometeorological response of the Canadian Prairies to variations in the large-scale circulation

During the winter and
during the summer


Some discussions related to (1) can be found in: Szeto et al. *BAMS*, 2007, 1411-1425. Szeto, *J. Climate*, 2008, 94-113

	Basin	Mackenzie (JJA)	Mississippi (MJJA)	SRB (JJA)
	Parameter	Р	Р	Р
11111	Е	0.34	0.61	0.21
	Fx	-0.26	-0.10	-0.19
	Fy	0.58	0.44	0.25,0.63*
	ρ	0.17	-0.19	0.00

Correlation coefficients between key JJA ERA-40 water cycle variables and P for Prairies computed over 1979-1999: P (precipitation), E (evaporation), Fx (zonal moisture flux), Fy (meridional moisture flux), ρ (recycling ratio). Correlations exceeding the 95% significance level are highlighted


* - correlation between P and seasonal average southerly moisture flux component across 50°N over eastern Prairies

JJA mean circulation at 850 hPa

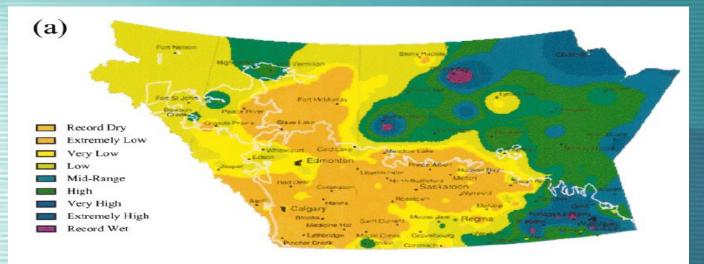
Mean meridional flow over the prairies is northerly –> mean southerly moisture transports into the Prairies must be accounted for by eddy transports

Warm-season Water Transport & Cycling from GOM to SRB

A flood within a drought

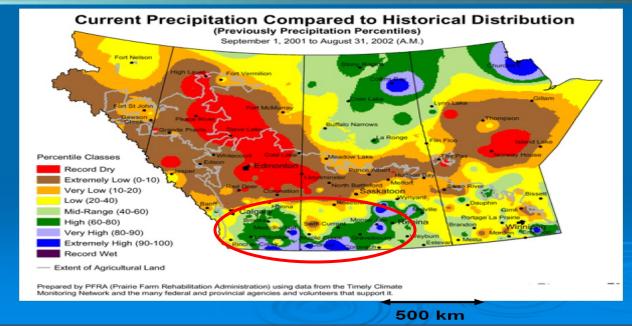
A recording-breaking Prairie rain event during Jun 8-11, 2002 that gave a several-month long break for the record-breaking 1999-2004 Prairie drought

75N

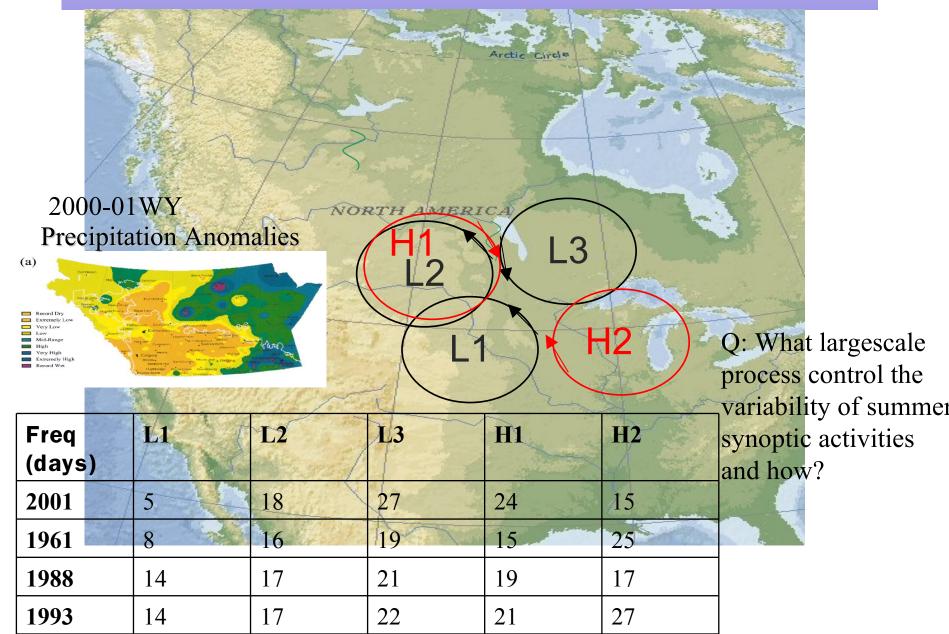

75N NOAA-CIRES/Climate Diagnostics Cente 70N 65N 60N 55N 50N 45N 5850 40N 5900 35N 30N 25N 180 110W 170W 160W 150W 140W 130W 120W 100₩ 90W 8014 500mb Geopotential Height (m) Composite Mean 6/9/02 to 6/9/02 5400 5450 5500 5550 5600 5700 5750 5800 5850

500mb Z Jun 9 2002

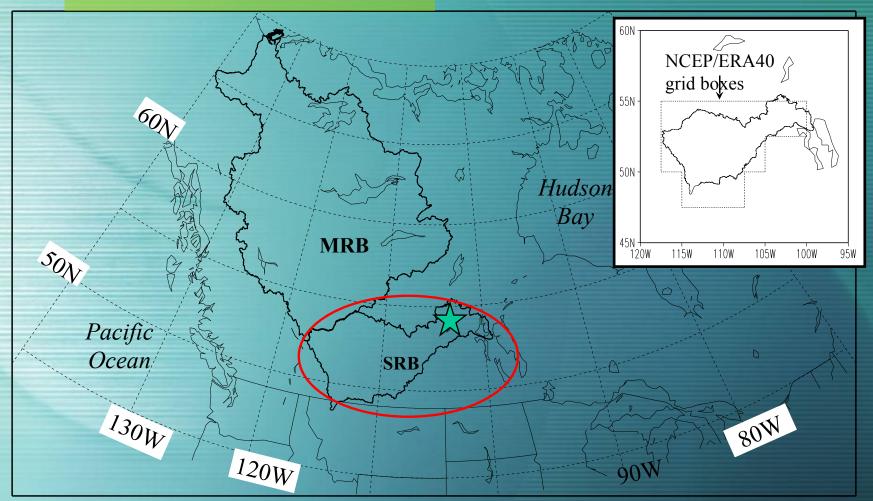
NOAA-CIRES/Climate Diagnostics Center 70N 65N 601 1025 55N 025 50N -1010-45N 1030 40N 35N 1020 30N 25N · 120W 180 160W 140W 130W 1100 100W 170W 15**0**₩ 9ÓW. 8<u>0</u>W Sea Level Pressure (mb) Composite Mean 6/9/02 to 6/9/02 990 995 1000 1005 1010 1015 1020 1025 1030


MSLP Jun 9 2002

That one rain event gave a several months break to the 99-04 drought over the southern Prairies


Precipitation Anomalies

2000-01



01-0 2

Synoptic Patterns Affecting Summer Moisture Flux and P over the Prairies

The Canadian Prairies

Study period: 1997-2002 for the formation and mature phases of the drought, and for the maximum overlap of available datasets

Longer-term budget climatologies from ERA-40, NCEP-R2, NARR and available observations