



Weather and Climate Extremes over Canada: Science and Adaptation, Winnipeg, Canada, February 7-9, 2011

Application of Remotely Sensed Precipitation Data in Monitoring and Analysis of Extremes: Challenges and Opportunities

## Amir AghaKoucak Kuolin Hsu & Soroosh Sorooshian

Center for Hydrometeorology & Remote Sensing Department of Civil & Environmental Engineering University of California Irvine





## SATELLITE PRECIPITATION DATA



Meteosat 7 (EUMETSAT)



Geostationary IR Cloud top data 15-30 minute temporal resolution

Passive Microwave (SSM/I) Some characterisation of rainfall ~2 overpasses per day per spacecraft, moving to 3-hour return time (GPM)



TRMM precipitation RADAR 3D imaging of rainfall 1-2 days between overpasses ( S-35° N-35° )

TRMM PR:(NASA/NASDA)orology & Remote Sensing, University of California, Irvine





### Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)

The algorithm utilizes a neural network classification and approximation approach to derive precipitation estimates based on IR data calibrated with microwave estimates.







### GEO (VIS/IR):

- Less accurate estimates
- Good global areal coverage with high temporal sampling



## LEO (PMW):

- More accurate and less frequent estimates
- Areal Coverage 3 hour accumulation (Regional gaps)









### PERSIANN data Spatial Resolution: 0.25° degree Temporal Resolution: 3-hour Source: HyDIS http://hydis8.eng.uci.edu/hydis-unesco/



### **PERSIANN-CCS** data

Spatial Resolution: 0.04° degree Temporal Resolution: 1-hour Source: GWADI http://hydis.eng.uci.edu/gwadi/





















## WHY SATELLITES?

## WSR-88D Radar Coverage



## Gauge Network



## 3 km Above Ground Level

Maddox, et. Al., 2002





## WHY SATELLITES?

## WSR-88D Radar Coverage



## Gauge Network



## 2 km Above Ground Level

Maddox, et. Al., 2002





## WHY SATELLITES?

## WSR-88D Radar Coverage



## Gauge Network



## 1 km Above Ground Level

Maddox, et. Al., 2002





# Drought Analysis Based on Standard Precipitation Index (SPI) Using Remotely Sensed Precipitation Data





SPI Estimates: NCDC Gauge Precipitation Data

1-Month SPI Index; June 2007



3-Month SPI Index; April-June 2007



6-Month SPI Index; January-June 2007







SPI Estimates: PERSIANN Satellite Precipitation Data

1-Month SPI Index; June 2007



SPI Estimates: NCDC Gauge Precipitation Data 1-Month SPI Index; June 2007



3-Month SPI Index; April-June 2007



3-Month SPI Index; April-June 2007



6-Month SPI Index; January-June 2007



6-Month SPI Index; January-June 2007









Center for Hydrometeorology & Remote Sensing, University of California, Irvine

rvine





Center for Hydrometeorology & Remote Sensing, University of California, Irvine



#### SPI Estimates: PERSIANN Satellite Precipitation Data



3-Month SPI Index; April-June 2008



6-Month SPI Index; January-June 2008



SPI Estimates: NCDC Gauge Precipitation Data



3-Month SPI Index; April-June 2008



6-Month SPI Index; January-June 2008





4

2

0

-2

\_4







-2

UCIrvine University of California, Irvine



## **RECONSTRUCTION OF LONG-TERM DATA**

Reconstruction of PERSIANN rainfall data back to 1983 based on the available Inferred (IR) data from GEO



rvine





## **RECONSTRUCTION OF LONG-TERM DATA**

Reconstruction of PERSIANN rainfall data back to 1983 based on the available Inferred (IR) data from GEO



University of California, Irvine



## **RECONSTRUCTION OF LONG-TERM DATA**

Reconstruction of PERSIANN rainfall data back to 1983 based on the available Inferred (IR) data from GEO



University of California, Irvin



**3-Month** Forecast

### ~ 30 Years Satellite-Based Rainfall







Irvine

University of California, Irvine







3-Month Forecas

## ~ 30 Years





## 1950





vine

University of California, Irvine



# Application of Satellite Precipitation Data to Flood Warning





## **High Resolution Data from Satellites**

Radar Observation (2 km AGL)

**PERSIANN-CCS Estimates** 



4km x 4km, 3-hour accumulated precipitation

vine





## **High Resolution Data from Satellites**

Radar Observation (2 km AGL)

**PERSIANN-CCS Estimates** 



### 4km x 4km, 3-hour accumulated precipitation

vine





## SATELLITE VS. GAUGE



rvine



## SATELLITE VS. GAUGE





rvine



## **FLOOD WARNING**



Center for Hydrometeorology & Remote Sensing, University of California, Irvine

Irvine



## **FLOOD WARNING**







## **FLOOD WARNING**







## QPOD



$$QPOD = \frac{\sum_{i=1}^{n} \mathbf{I}\left(P_{sat}|P_{sat} \geq t\&P_{ref} \geq t\right)}{\sum_{i=1}^{n} \mathbf{I}\left(P_{sat}|P_{sat} \geq t\&P_{ref} \geq t\right) + \sum_{i=1}^{n} \mathbf{I}\left(P_{ref}|P_{sat} < t\&P_{ref} \geq t\right)}$$

- $P_{sat}$  = satellite estimates
- $P_{ref}$  = reference measurements (e.g., STIV data)
- t = extreme threshold (e.g., 75, 90, 95 percentiles of data)
- n =number exceedances

Period of Analysis: 2005-2008

Reference data: Stage IV radar-based gauge adjusted data





University of California, Irvine



## QFAR

### Quantile False Alarm Ration (QFAR)

$$QFAR = \frac{\sum_{i=1}^{n} \mathbf{I} \left( P_{sat} | P_{sat} \ge t \& P_{ref} < t \right)}{\sum_{i=1}^{n} \mathbf{I} \left( P_{sat} | P_{sat} \ge t \& P_{ref} \ge t \right) + \sum_{i=1}^{n} \mathbf{I} \left( P_{ref} | P_{sat} \ge t \& P_{ref} < t \right)}$$

- $P_{sat}$  = satellite estimates
- $P_{ref}$  = reference measurements (e.g., STIV data)
- = extreme threshold (e.g., 75, 90, 95 percentiles of data)
- n =number exceedances

Period of Analysis: 2005-2008

Reference data: Stage IV radar-based gauge adjusted data





University of California, Irvine



## **MONTHLY QUANTILE BIAS**

### **Monthly Quantile Bias**

$$MQB = \frac{\sum_{i=1}^{n} \left( P_{sat} | P_{sat} \ge t \right)}{\sum_{i=1}^{n} \left( P_{ref} | P_{ref} \ge t \right)}$$

- $P_{sat}$  = satellite estimates
- $P_{ref}$  = reference measurements (e.g., STIV data)
- = extreme threshold (e.g., 75, 90, 95 percentiles of data)
- n =number exceedances

Period of Analysis: 2005-2008

Reference data: Stage IV radar-based gauge adjusted data





University of California, Irvine



## **ADAPTING ALGORITHMS FOR CLIMATE REGIONS**



Center for Hydrometeorology & Remote Sensing, University of California, Irvine

Irvine



## **ADAPTING ALGORITHMS FOR CLIMATE REGIONS**



Center for Hydrometeorology & Remote Sensing, University of California, Irvine

Irvine



## **ADAPTING ALGORITHMS FOR CLIMATE REGIONS**



Center for Hydrometeorology & Remote Sensing, University of California, Irvine

Irvine



## **ERROR DECOMPOSITION**



| Total MSE                                             | Systematic MSE                                              | Random MSE                                              |
|-------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| $\sum_{i=1}^{n} \left( P_{sat} - P_{ref} \right)^2 =$ | $\sum_{i=1}^{n} \left( P_{sat}^{*} - P_{ref} \right)^{2} +$ | $\sum_{i=1}^{n} \left( P_{sat} - P_{sat}^{*} \right)^2$ |
| n                                                     | n                                                           | п                                                       |

$$P_{sat}^* = a P_{ref} + b$$
  
 $P_{sat}^*$ : Linear regression to reference measurements  
 $a:$  Slope  
 $b:$  Intercept

University of California, Irvine



## **ERROR DECOMPOSITION**



Center for Hydrometeorology & Remote Sensing, University of California, Irvine

vine



## **ERROR DECOMPOSITION**





UCIrvine University of California, Irvine



Center for Hydrometeorology & Remote Sensing, University of Calle



## **HYDROLOGIC APPLICATIONS**

## Distributed Model Intercomparison Project (DMIP)

### Hydrologic Modeling

vine

University of California, Irvine





## **HYDROLOGIC APPLICATIONS**

## Distributed Model Intercomparison Project (DMIP)

### Hydrologic Modeling







## **HYDROLOGIC APPLICATIONS**

## Distributed Model Intercomparison Project (DMIP)

### Hydrologic Modeling







# THANK YOU FOR YOUR ATTENTION

Amir AghaKoucak University of California, Irvine amir.a@uci.edu

