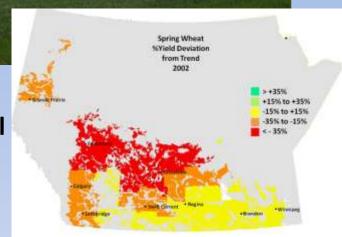
Real-Time Soil Moisture Estimation in Western Canada: Needs and Issues

Paul Bullock Andy Nadler Mike Wroblewski Bruce Burnett Guy Ash Aston Chipanshi John Hanesiak Rick Raddatz Manasah Mkhabela Julian Brimelow University of Manitoba Weather Innovations MB Agric Food and Rural Init Canadian Wheat Board Canadian Wheat Board Agric & Agri-Food Canada University of Manitoba University of Manitoba University of Manitoba

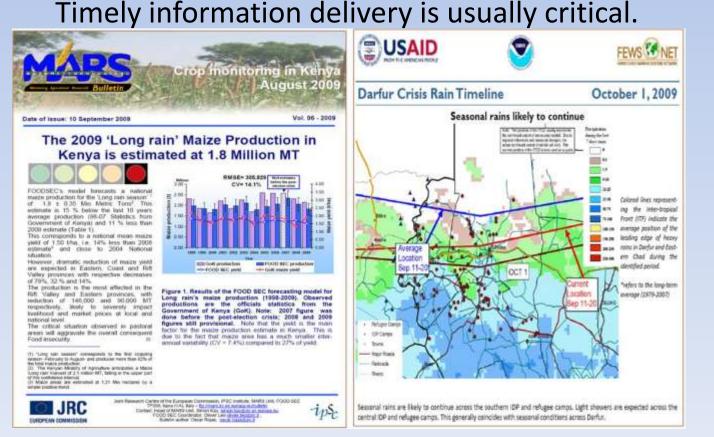

Applications for Soil Moisture Data

Soil Trafficability

Crop Disease and

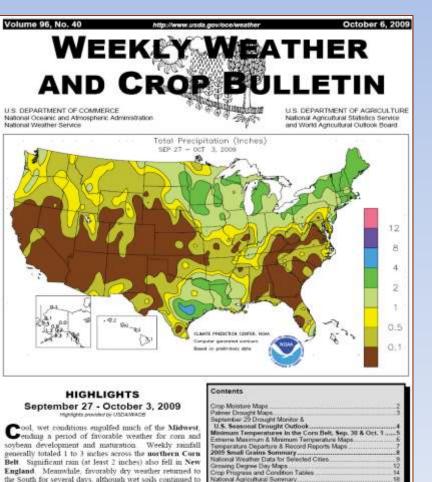
Pest Risk

Crop Yield Potential – both local and regional


Extent of flooded or drought soils

Flood risk assessment and runoff potential

Severe weather risk assessment


Issues

"For agrometeorological information to be useful, it must deliver the right information to the right user at the right time." (Motha 2001, Agrometeorological Bulletins: How Can We Improve Them? Proc. Inter-regional Workshop, www.wamis.org /tools/dissem/ImproveAgBull.pdf)

User needs vary in terms of scale

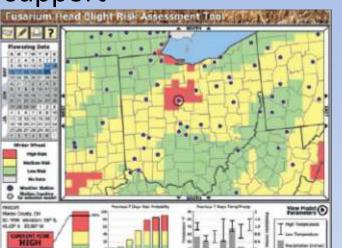
- i. Broad area assessment for policy or support programs
- ii. Local area assessment for insurance, municipality or industry
- iii. Field scale for producer decision support

tate Agricultural Summaries.

detin Information &

ational Weather and Crop Summary 8

September Temperature/Precipitation Table


Map of Areas Experiencing the End of Growing Seaso

hamper fieldwork and threaten the quality of unharvested

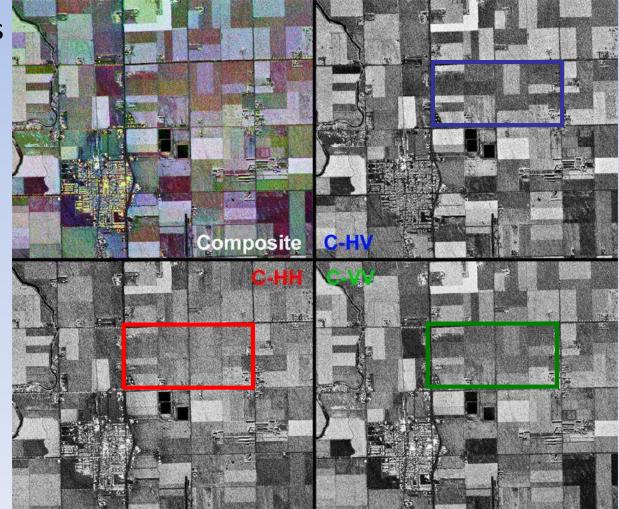
cotton, rice, and soybeans. In addition, wet weather

returned to the western and central Gulf Coast States

(Continued on page 8)

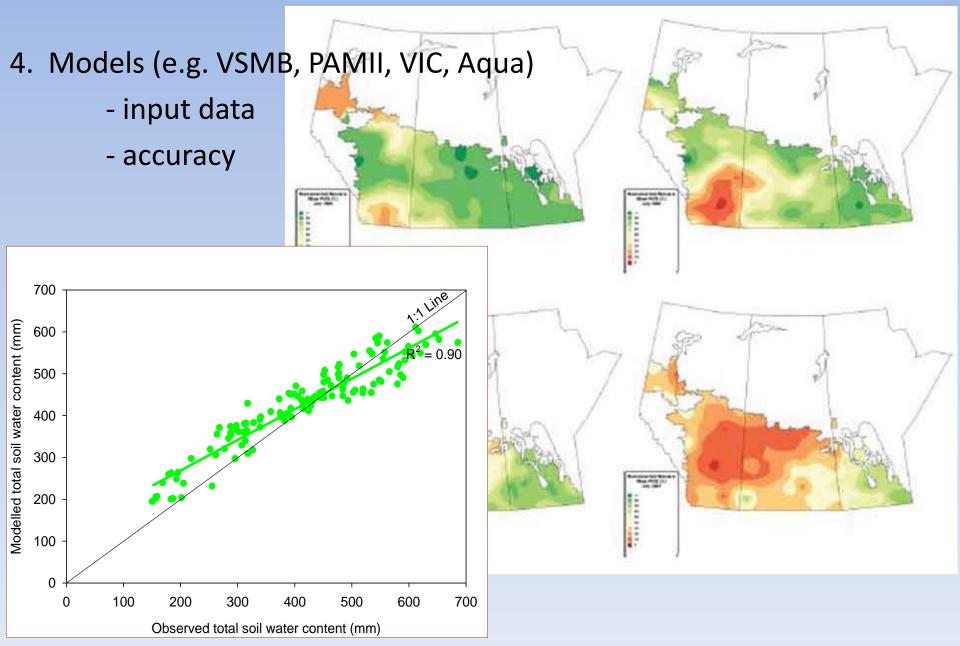
Sclerotinia stem rot forecast for canola. June 23, 2009

Type of soil moisture information needed varies


i. Depth

- surface (0-5 cm)?
- top zone (0-15 cm)?
- root zone (0-120 cm)?
- > Other?
- ii. Unit of Measurement
 - total soil water?
 - plant available water?
 - % of water-holding capacity?
 - ➤ index?
- iii. Frequency
 - > monthly?
 - > weekly?
 - daily?
- iv. Period of interest
 - spring?
 - ➤ fall?
 - growing season?
 - > other?

- 1. Soil sampling (e.g. Les Henry's fall stubble moisture map)
 - one-time snapshot
 - timeliness of the information

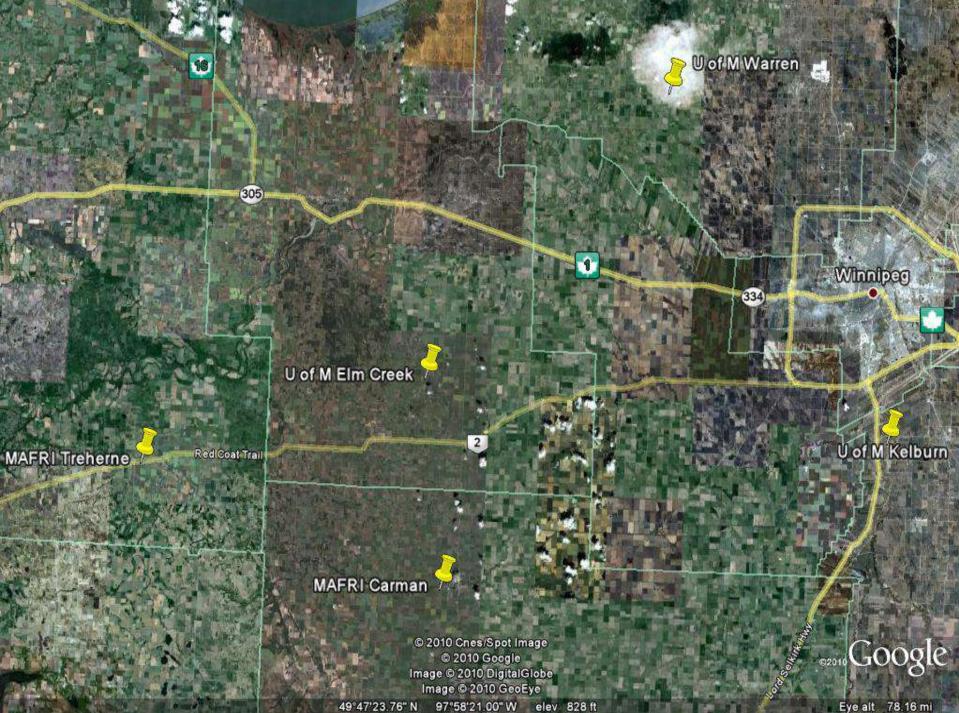


- 2. Remote Sensing (e.g. Radarsat, Radarsat II)
 - surface 5 cm only
 - vegetation issues

- 3. Monitoring network (e.g. Alberta soil moisture network)
 - cost
 - extent and representativeness

Operational Soil Moisture Monitoring Group

Currently considering soil moisture models that use real-time weather data.


On-going model output verification from in situ sensor networks, remote sensing and soil sample data.

Soil moisture products considered:

- AAFC "Total" Soil Moisture (www.agr.gc.ca/drought)
- McGill Soil Moisture Anomaly Index

(www.meteo.mcgill.ca/~leiwen/vic/prairies/index2.html)

 Canadian Wheat Board Moisture Model (weatherfarm.weatherbug.com/farm)

Eye alt 78.16 mi

Research Background (Field Installations)

Factory Calibration Equations

$$\begin{aligned} \theta &= A + B\varepsilon_{R,TC} + C\varepsilon_{R,TC}^2 + D\varepsilon_{R,TC}^3 \qquad [1] \\ \theta &= A + B\varepsilon_R + C\varepsilon_R^2 + D\varepsilon_R^3 \qquad [2] \\ \theta &= A\sqrt{\varepsilon_{R,TC}} + B \qquad [3] \\ \theta &= A\sqrt{\varepsilon_R} + B \qquad [4] \end{aligned}$$

θ	Soil Moisture in units of water fraction by volume (m ³ m ⁻³)			
ε _{r,tc}	Temperature Corrected Real dielectric Permittivity			
ε _r	Real Dielectric Permittivity			
A, B, C, D	Coefficients see table 2.			
Table 1, Variable definitions				

Soil Texture	Equa -tion	Α	В	С	D	Pedology/Mineralogy		
Sand (1)	1	-8.63	3.216	-9.54 E-2	1.579 E-3	Most Sands (Default)		
Silt (1)	1	-13.04	3.819	-9.129 E-2	7.342E-4	(Default)		
Clay (1)	2	-20.93	6.553	-0.2464	3.2414E-3	(Default)		
Loam (1)	4	0.109	-0.179			Suitable for Most Soils (Default)		
Silt Loam (1)	3	0.1226	-0.1903			A Horizon		
Sandy Loam (1)	4	0.1017	-0.1786			A Horizon		
Sandy Clay Loam (1)	4	0.1132	-0.1989			Bk Horizon		
Loam (2)	4					Bk Horizon		
Sandy Loam (2)	3	0.1251	-0.2065			Ap Horizon/Kaolinite		
Clay (2)	4	0.1111	-0.1725			Bt Horizon/Kaolinite, Gibbsite		
Sandy Loam (3)	4	0.1070	-0.1825			A Horizon		
Loam (3)	3	0.1170	-0.1847			Ap Horizon/ Kaolinite, Vermiculite		
Loam (4)	3	0.1161	-0.1909			E Horizon		
Silty Loam (2)	3	0.1031	-0.1648			Ap Horizon/Montmorillonite		
Silty Clay Loam (2)	4	0.0967	-0.1613			Bg Horizon		
Silty Loam (3)	3	0.0958	-0.1610			Bw Horizon		
Clay Loam	4	0.1033	-0.1768			A Horizon/Montmorillonite		
Silty Clay	4	0.1088	-0.1738			Bg Horizon Montmorillonite		
Silty Loam (4)	4	0.1004	-0.1588					
Loamy Sand	3	0.1204	-0.2025			Ap Horizon		
Sandy Loam (4)	3	0.1105	-0.1725			Ap Horizon		
Sandy Clay Loam (3)	3	0.1078	-0.1723			Bt Horizon		
Silty Clay Loam (4)	4	0.1033	-0.1702			A Horizon		
Table 2, calibration coefficients according to texture and mineralogy								

Table 2, calibration coefficients according to texture and mineralogy

http://www.stevenswater.com/catalog/products/soil_sensors/datasheet/The%20Stevens%20Hydra%20Probe%20Inorganic%20Soil%20Calibrations.pdf

Initial Results

- Factory calibration results were poor in clay soils (with the volumetric content higher than porosity) but no distinct textural pattern was observed
- While FDRs are good instruments that provide real time soil moisture estimates, soil-specific calibration must be carried out if a high level of accuracy is required
- Field calibration requires adequate gravimetric data points. Increasing the number of calibration points boosts our confidence in the regression equation

Acknowledgements

- Agri-Food Research and Development Initiative (ARDI)
- Canadian Wheat Board (CWB)
- Manitoba Agriculture, Food and Rural Initiatives (MAFRI)
- Manitoba Water Stewardship (MWS)