Ray Garnett
Agro Climatic Consulting (ACC) Natural Resources Institute (NRI)

The Extremes Workshop
Inn at the Forks
Winnipeg, Manitoba

Tuesday, February 8, 2011.

INTRODUCTION

- The purpose of this talk is to present a preliminary assessment of the causes and consequences of extremely wet and dry MayJulys periods over the prairies since 1990 with special reference to 2010.
- Using rainfall data for the period 1950-2010 there have been six extremely wet (2010, 1991, 1999, 1993, 2005 and 2004) and two extremely dry (2009 and 2003) May-July periods since 1990.
- The summers of 2010, 1991, 1999, 1993, 2005, 2004, 2009 and 2003, are analyzed on a case-by-case basis in relation significant seasonal influences. Garnett et al. 2006 found that a combination of low (high) sunspot, a westerly (easterly) phase of the quasi-biennial wind oscillation, El Nino (La Nina) conditions and below (above) normal North American snow cover can act synergistically to produce a wet (dry) summers over the prairie region.
- Solar cycle 24 (2010-2021) will be compared and contrasted with the Dalton Minimum of 1795-1823.

STUDY AREA AND DATA SOURCES

MONTHLY DATA FOR THE PERIOD 1950-2004

Precipitation and temperature for 51 stations
Environment Canada
Precipitation 2005-2010 for 30 stations
Environment Canada
Sunspot
U.S. NOAA Geophysical Data Centre Boulder, Colorado.

30 hpa Quasi-Biennial Wind Oscillation (QBO)
U.S. Climate Prediction Centre

Nino 3 and Nino 3.4 sea surface temperatures
U.S. Climate Prediction Centre

North American snow (NAS) cover extent 1974-2004
U.S. Climate prediction Centre

PRECIPITATION AND TEMPERATURE OVER THE PRAIRIE REGION APRIL THROUGH SEPTEMBER OF 2010
Table 1.

	Precipitation (mm) Temperature (${ }^{\circ} \mathrm{C}$)					
	Actual	Norm	\% of normal	Actual	Normal	DFN
April	54	27	200	6.4	3.6	$+2.8$
May	95	47	202	9.2	10.8	-1.6
June	102	74	138	15.2	15.4	-0.3
July	71	67	106	19.7	18.0	-0.6
August	74	55	134	16.7	17.0	-0.7
September	54	41	132	10.1	11.2	-1.1
Mean anom	ly April-	Septem	152			-0.25

Note: Precipitation and temperatures are based on 30 and 10 stations respectively
Normal amounts based on 100 stations for the period 1950-1995

WETTEST AND DRIEST MAY-JULYS FOR THE PERIOD 1950-2010

Extremely wet and dry years since 1990 highlighted

Table 2.

Wettest ($\mathrm{mm} / \mathrm{mo}$)	Driest ($\mathrm{mm} / \mathrm{mo}$)
201088.3	196728.7
199185.5	195837.9
199984.4	196140.1
199382.5	198542.8
195382.1	200946.0
200581.0	195746.3
198677.3	200346.5
197777.1	
196376.8	
196576.7	
200476.1	

A. Wet prairie summer

B. Dry prairie summer

Fig. 2. Conceptual model of factor producing wet and dry prairie summers. H: high, L: low pressure system

Fig. 1. Sunspots per month for two wettest May-Julys

Fig. 2. Accumulated Nino 3.4 sea surface temperatures before and during June-July of the two wettest May-Julys

Working Hypothesis re: causes of two wettest May-Julys for the period 1990-2010 2010: Low sunspot activity, El Nino and below normal April NAS 1991: El Nino, westerly QBO, and below normal April NAS

Fig. 5. Sunspots per month before and during fifth and sixth wettest

Fig. 6. Accumulated Nino 3.4 sea surface temperatures before and during June and July of the fifth and sixth May-Julys

Working Hypothesis re: causes of fifth and sixth wettest May-Julys during 1990-2010. 2005: Low sunspot activity, El Nino, westerly QBO Sept.-Dec., below normal Apr. NAS. 2004: Low sunspot activity, El Nino, below normal Apr. NAS

Fig. 7. Sunspots per month for two driest May-Julys

Fig. 8. Accumulated Nino 3.4 sea surface temperatures before and during June-July of the two driest May-Julys

Working Hypothesis re: causes for two driest May-Julys for the period 1990-2010 2003: Above average sunspot activity Sep-Aug, easterly QBO Dec-Jan 2009: La Nina conditions Dec-Mar (extremely late harvest, near record yields)

Table 1. Correlation coeffic ients of sunspots per month vs. PDSI values						
Station	May	June	July	May-July	Data period	N
Brandon	-0.077	-0.119	-0.091	-0.104	$1895-2001$	107
Calgary	-0.094	-0.095	-0.098	-0.103	$1895-2001$	107
Coronation	-0.207	-0.183	-0.141	-0.183	$1945-2001$	57
Dauphin	0.030	0.040	0.073	0.051	$1911-2001$	91
Edson	-0.019	0.024	0.027	0.012	$1920-2001$	82
Edmonton	-0.132	-0.249^{*}	-0.126	-0.189	$1916-2001$	86
Estevan	-0.278^{*}	-0.299^{*}	-0.259^{*}	-0.289^{*}	$1944-2001$	58
Medicine Hat	-0.192^{*}	-0.186	-0.190	-0.195^{*}	$1896-2001$	106
Prince Albert	-0.188	-0.207^{*}	-0.252^{*}	-0.230^{*}	$1895-2001$	107
Regina	-0.180	$-0.247^{* *}-0.269^{* * *}$	$-0.245^{* *}$	$1898-2001$	104	
Saskatoon	-0.141	-0.159	-0.179	-0.171	$1902-2001$	100
Swift Current	-0.217^{*}	-0.179	-0.212^{*}	-0.214^{*}	$1895-2001$	107
Winnipeg	-0.123	-0.094	-0.121	-0.127	$1895-2001$	107

*Significant at the 5% level (two tailed)
** Significant at the 1% level
*** Significant at the $.1 \%$ level
Table 2. Drought and Flood Frequency during five Hale cycles since 1913
Polarity Year in Cycle Droughts (PDSI>-2.22) Floods (PDSI > 1.36)

	1		1996
	2		1955
	3		
	4	1937	
Positive	5	19381980	
	6	191820011939	
	7	19191940	1943
	8	192019611941	
	9		1965
	10		1966
	11		
	13		$1927(2010)$
	14	1988	19911928
	15		1970
	16	1949	19511993
	17		
	18	1930	19741954
	19	1931	1975

Based on June-Aug PDSI data 1913-2005 \& (May-July precipitation 2005-2010)
Currently in year 16 of the Hale Magnetic or 22-year Double Sunspot cycle

CONCLUSIONS

```
* Since 1990 there have three times as many extremely wet
May-Julys as extremely dry May-Julys.
* Results
    Extremely wet May-Julys
\begin{tabular}{ccccc} 
& Sunspots & QBO & ENSO & NAS \\
2010 & F & & \(F\) & \(F\) \\
1991 & & \(F\) & \(F\) & \(F\) \\
1999 & \(F\) & & & \(F\) \\
1993 & \(F\) & & \(F\) & \(F\) \\
2005 & \(F\) & \(F\) & \(F\) & \(F\) \\
2004 & \(F\) & & \(F\) & \(F\)
\end{tabular}
    Extremely dry May-Julys
2009
    F
2003 F F
*Significant correlations have been found between sunspot and PDSI data over the prairie region supporting the findings of Garnett et al 2006.
*Observational evidence suggests we are now in second half of the Hale Cycle when there has been about three times as many extremely wet May-Julys as dry May-Julys for the period 1913-2010.
*Some solar models predict the Sun could be entering a period like the Dalton Minimum at the time of Manitoba's Selkirk Settlers. A sunspot peak of no more than 50 sunspots per month around 2013-2014 would serve to confirm this.
```

