Assessment of apportionment and measured streamflows as possible drought indicators.

Richard Lawford and Phillip Harder lawfordr@cc.umanitoba.ca and harderp@cc.umanitoba.ca

November 18 2009 Prairie Hydrology Workshop, Saskatoon SK

Drought Research Initiative

- The Drought Research Initiative (DRI) receives funding support from the Canadian Foundation for Climate and Atmospheric Research (CFCAS) to research the 1999-2005 drought: one of the worst natural disasters that Canada has ever suffered.
- The main objectives of DRI are:
 - Characterize the physical features of the drought
 - Improve the understanding of processes and feedbacks governing the formation, evolution, cessation and structure of the drought
 - Assess and contribute to reducing uncertainties in the prediction of drought
- Additional objectives are:
 - Compare the similarities and differences of current drought to previous droughts and those in other regions
 - Apply our progress to address critical issues of importance to society

Streamflow: a complex and important indicator of drought

- It represents the runoff generation over the upstream area which can be a large area in some cases.
- The streamflow at a point is affected by the amount of water drawn off upstream for irrigation and the amount that is retained in wetlands, sloughs and reservoirs.
- It is a visible manifestation of the "dryness" of an area for the public.

Objectives of Streamflow Analysis

- To assess the applicability of streamflow as a drought indicator
- To explore the impact of the 1999-2004/5 drought upon streamflow

Prairie Complications

- Streamflow is highly regulated and may not reflect unaltered conditions
- Prairie streamflow comes from the melt of mountain snowpack while the prairie contribution may be more ephemeral.

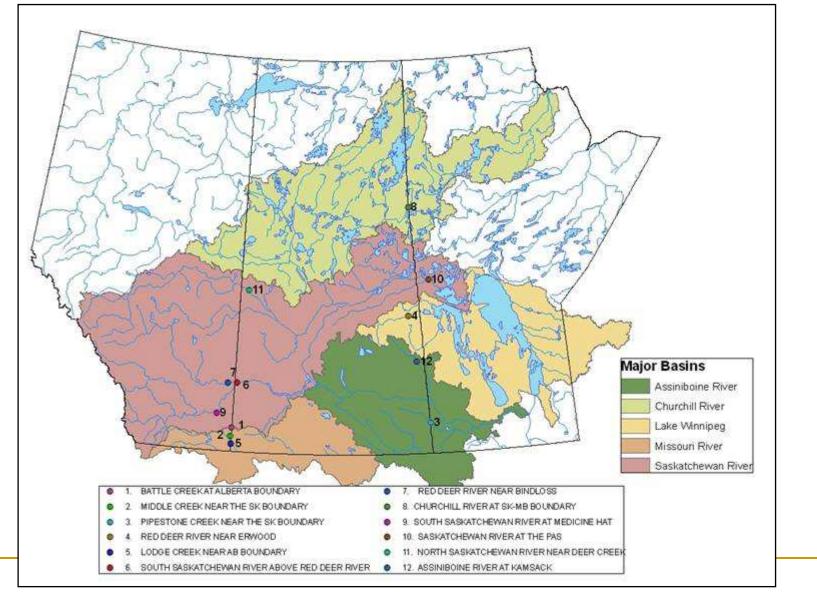
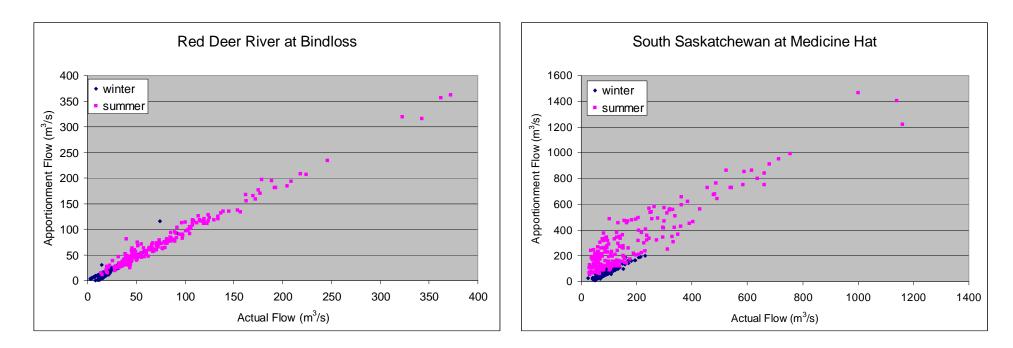


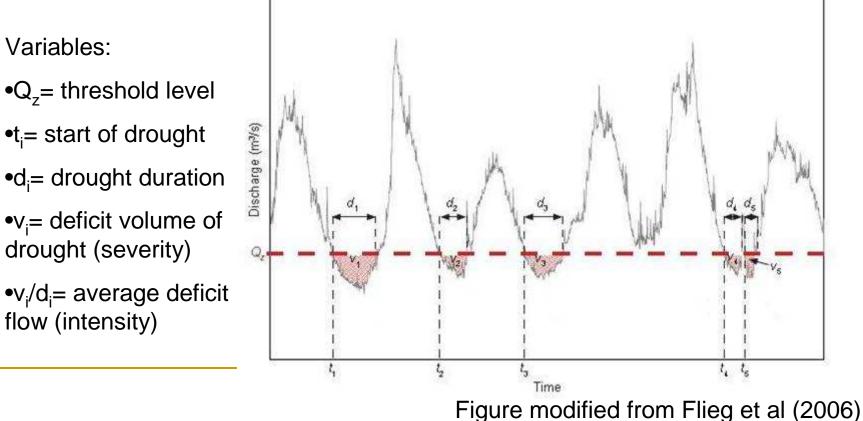
Photo source: Alberta Irrigation Projects Association and bigfoto.com


Data

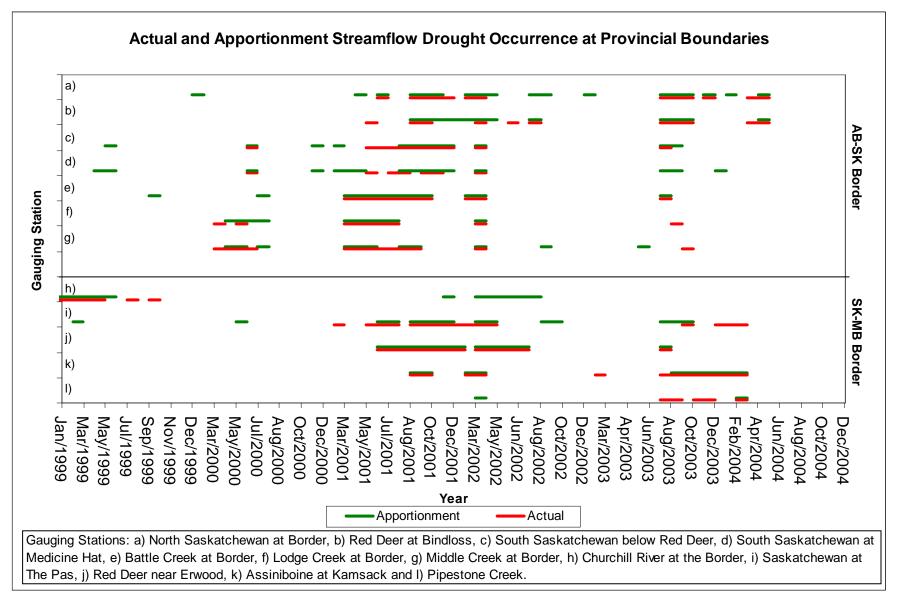
- Monthly actual and apportionment flows were obtained from Environment Canada
 - Apportionment flows are estimates of the amount of water that would have flowed across the border if there had been no human activity (irrigation, reservoirs, municipalities, etc).
 - Are used in water management thus of interest to see how they address drought
- Stations located on the AB-SK and SK-MB borders
- Data period was 1977-2007 for major rivers and 1985-2007 for smaller rivers

Stations

Actual vs. Apportionment

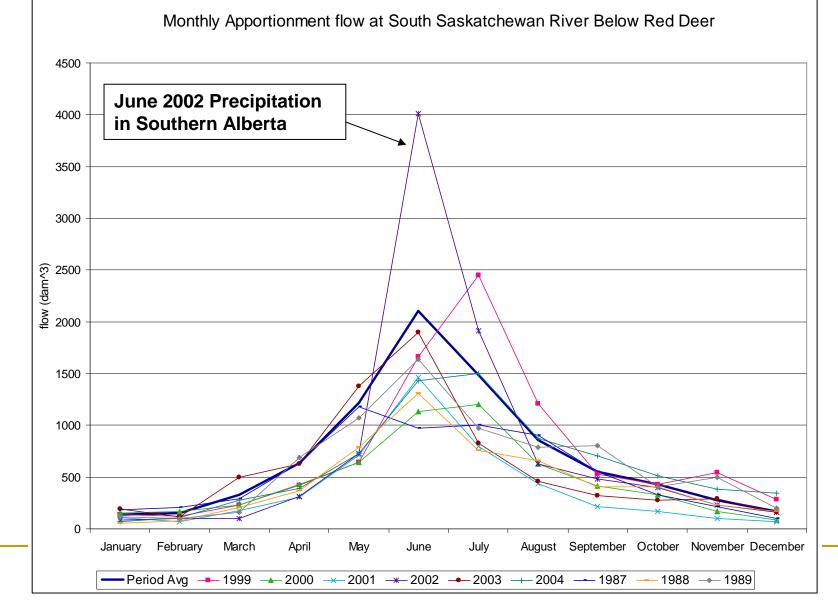


Small differences between apportionment flow and measured streamflow.


Large differences between apportionment flow and measured streamflow.

Methodology

- Employed the threshold technique to characterise hydrologic drought
 - Based upon work by Yevjevich (1967)
- Threshold level employed was the 10th percentile of monthly stream flow


Results

Most severe drought events

Station	Total Months below Q10*	Max. consecutive months below Q10*	Start date of max consecutive period below Q10*	Deficit Volume (m ^{3)*}
North Sask. at A-S border	13/10	4/3	Sept 2001/ Sept 2001	4,819,392/6,432,903
Red Deer River at Bindloss	11/13	3/8	Aug 2003/ Sept 2001	2,931,552/3,400,940
South Sask. below Red Deer River	11/12	8/5	May 2001/ Aug 2001	8,825,376/15,332,151
South Sask at Medicine Hat	7/16	2/5	Oct 2001/Aug 2001	3,646,944 /14,016,767
Battle Creek	11/12	8/8	Mar 2001/Mar 2001	15,652/19,496
Middle Creek	13/11	7/3	Mar 2001/Mar 2001	2028/2,123
Lodge Creek	10/10	5/5	Mar 2001/Mar 2001	673/2,642
Churchill River	2/7	1/6	Sept 1999/Mar 2002	900,000/2,615,903
Saskatchewan River at The Pas	16/15	8/4	Sept 2001/Sept 2001	57,049,920/32,552,424
Red Deer River (near Erwood)	14/14	8/8	Jun 2001/Jun 2001	309,121/275,813
Assiniboine River at Kamsack	13/11	8 /7	Aug 2003/ Sept 2003	73,815/35, 606
Pipestone Creek	5/3	2/1	Aug 2003/Mar 2004	608/5,545
Median	11/11.5	6/5	Jun 2001/Aug 2001	
*Actual/Apportionment	1	1		

Effect of Severe Rainfall Event

Conclusions

- Apportionment and actual stream flows using the threshold method do provide a reasonable indicator of drought conditions.
- Small basins respond more quickly to drought than larger basins which suggests that streamflow in these basins is more susceptible to drought.
- Apportionment flows generally reflected the progress of the actual streamflow drought along the Alberta/ Saskatchewan and Saskatchewan/Manitoba borders during the 1999/2004 drought although some significant deviations occurred at specific stations.
- Severe apportionment drought periods generally lag behind severe actual drought periods
- While small rain events do not have a measurable impact on the flows, larger-scale, heavy rain events can result in significant increases in flows that can last for as long as a month.

References

- Yevjevich, V. An objective approach to definitions and investigations of continental hydrologic droughts, Hydrology Papers 23, Colorado State University, Fort Collins, USA, 1967.
- A. K. Fleig, L. M. Tallaksen, H. Hisdal, and S. Demuth. 2006. A global evaluation of streamflow drought characteristics. Hydrol. Earth Syst. Sci. Discuss.: 18