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Discussion

* Background
— EC Modelling System

* Current Projects

— Model Validation
Groundwater storage and weighing lysimeters

— Coupled Model Application
EC MESH model on SSRB

— Dealing with non-contributing areas.
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CaPA: Analyse de précipitation
CalDAS : Analyse du surface

e Assimilation combines different sources of available information
(model, observations, remote sensing)

— CaPA currently makes use of observed precipitation, 6h-12h ou 12h-
18h precipitation forecasts from 15 km GEM

‘ e
e 4

. o S
S E
YL




MESH: A MEC surface/hydrology
configuration designed for regional
hydrological modeling

* Designed for a regular grid at
a 1-15 km resolution

* Each grid divided into

: Sub-grid
grouped response unlts_ Hetereogeneity
(GRU_or tiles) to dea! with (land cover,
subgrid hetereogeneity soil type, slope,

— based on WATFLOOD aspect, altitude)

A relatively small
number of classes
are kept, only the %
of coverage for
each class is kept




MESH: A MEC surface/hydrology configuration
designed for regional hydrological modeling

* The tile connector

(1D, scalable) redistributes mass Tile L | __ 2
and energy between tiles in a grid connector i =
cell 2
— e.g. snow drift -~ =
 The grid connector (2D) is s - B i
responsible for routing runoff _ 36000 2

— can still be parallelized by Grid i e
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WATFLOOD results



GCM scenario results 2039 — 2070
cumulative flows — Debits cumulatif

Bow Red Deer
current echa2l hada21 ncara2l current echa2l hada21 ncara2l
Snow accum (mm) 120.8 105.0 134.5 111.0{ [Snow accum (mm) 12.4 54 9.4 6.5
Precip - ET (mm) 162.9 75.0 118.7 157.9] [Precip - ET (mm) 106.6 59.3 90.0 123.2
AET/PET 1.00 0.93 0.98 1.00| |AET/PET 0.76 0.66 0.70 0.75
Bow River at mouth Red Deer at Bindloss
10.1% -17%

(-1% to 21%)

Oldman at mouth

-23.3%
(-37% to -7%)

(-44% to 21%)

South Sask at
Diefenbaker

-9.5%
(-26% to 12%)

Oldman

current  echa2l hada2l ncara2l
Snow accum (mm) 4.2 1.8 5.4 2.3
Precip - ET (mm) 74.8 52.6 73.0 79.1
AET/PET 0.52 0.45 0.48 0.52

South Sask

current  echa2l hada21 ncara2l
Snow accum (mm) 16.7 5.9 15.7 10.2
Precip - ET (mm) 31.7 26.5 34.1 31.3
AET/PET 0.46 0.38 0.41 0.47




Glacier Contribution Downstream

Edmonton and Calgary 1975 to 1998

Bow River, Calgary

_ _ North Saskatchewan River, Edmonton
¢ Wastage (Volume-Area relationship)

* NSRB at N.Sask at Edmonton = 4 000 x10° m3
2.6% annually

* SSRB at Bow River at Calgary = 1 800 x10% m3
2.8% annually

* Melt (WATFLOOD/MESH and Volume-Area difference)
* NSRB at N.Sask at Edmonton = 14 000 x106 m3
* SSRB at Bow River at Calgary = 4 000 x106 m3

* Melt is over double the volume of wastage
* Regulated streamflow

* Main direct impact of glacier decline will be the
advance of Melt volume towards the spring
snowmelt peak timing

* (Result of climate change is that the volume of
Melt will decrease)



Validation

* Traditionally we compare to observed
hydrographs

* Are we getting the right answer for the
wrong reasons ?



Location of Duck Lake observations wells and Watflgrid cell
[Marin et al. 2009 ]
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Duck Lake SK Observation wells. water levels, 1964-2006
[Source: SK Watershed Authority, www.swa.ca]
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Water storage changes observed for Duck Lake SK obs  ervation
wells 1965-2007:

700
600
500
400

300 -
200 -

100

-100 -

Duck Lake No. 1 — Shallow water table well with specific yield = 0.30
Duck Lake No. 2 — Deep well in confined aquifer (geological weighing
lysimeter)
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Overview of the Weighing Lysimeter

Instrumentation

» Fundamentals
» Change of mechanical surface loading is instantaneously transmitted
to deep saturated formations resulting in change of pore water
pressure;

» Pilezometers in saturated formations can therefore detect pore
pressure changes due to hydrological processes such as:

Conceptual Sketch of Piezometric Weighing
Lysimeter Installation

v' Snow accumulation;
v' Rainfall; “ ** *
v Evapotranspiration e GLHS
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Van der Kamp et al, 2003




Water Storage Change (mm)

Comparison of Duck Lake No. 2 (geological weighiysgimeter) water
level record with Watflood simulation of the vediavater balance
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Comparison of Watflood output with Duck Lake geotad)
weighing lysimeter, 1996-2005
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Comparison of Duck Lake No. 1 (water table storeggnge) with
Watflood simulation of the changes of groundwateragje
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Comparison of Watflood simulation of groundwaterage with the record for
the water table well at Duck Lake. Note that Wattfl@oes not capture the
rapid drawdown of the water table during the grapgéeason.
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Moving Towards Coupled Model



NAESI: Water Balance Indicators

* QObjective

* To showcase our capacity
required indicators of the
hydrological assessment
which are useful for the
development of standards
using a coupled system of
environmental modeling

* Precipitation (CaPA)

e Soil moisture and snow on the
ground (CaLDAS)

* Discharge (MESH)
* Evapotranspiration

* August 1,2006 to July 31,2007 0



CaPa and Assimilation
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Channel elevations

MESH model physics (ISBA LSS, migrating
to CLASS LSS in future)

— with added routing based on Watroute

Model forcing is archived GEM model output
conditioned by precipitation reanalysis
(CaPA) and land data assimilation (CaLDAS)

August 1, 2006 to July 31, 2007
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Stand alone MESH

BRIGHT WATER CREEK WATERSHED
i rg

* MESH model physics (CLASS LSS)
i — with added routing based on Watroute
* Forcing with met tower data

— Temp, precip, station pressure, specific humidty,
wind, lw and sw radiation

* May 15 to November, 2007, half hourly

Soil Temperature - Layer 1 - Kenaston area - Soil Moisture - Kenaston area - Flux tower site [Fr  action)]
Flux Tower site ( C) 0.45
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Potholes ..........

* Hydrological models do not currently incorporate the influence of
dynamic potential surface storage and the effect this dynamic
storage has on contributing area in prairie pothole basins.

* Many models simply assume that 100% of the basin contributes
to the outlet.

* TOPAZ and other landscape analysis tools can determine a
storage threshold volume that allows 100% of the basin to
contribute.

* However, due to the semi-arid environment, such a threshold
runoff event may occur infrequently in the prairie pothole
region(Leibowitz and Vining, 2003).

* To improve hydrological models for the prairie pothole region, a
methodology for quantifying contributing areas for runoff events
that only partially satisfy the potential surface storage of a basin
(pre-threshold runoff events) is required.



Non-contributing areas

- mean annual runoff -

Prairie pothole region
encompasses approximately
775,000 ki of the north-
central United States and
south-central Canada.

Contributing area within this
landscape varies by seasons
and year




Importance of Connectivity
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Key Concepts

Connected area

0-0-0-0

Basin contributing area

00

Pond contributing area (CA,) boundary
Surface water area

Maximum pond volume (V,,.y)
Connected

Unconnected

Basin contributing area (CA,)

Sub-basin ID



Conceptual landscapes
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Prairie pothole algorithm
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SPILL Results

Contributing area/Potential storage volume relationship

St. Denis - Study basin 1
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Hysteresis
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St. Denis Study basin 3
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St. Denis pond depths - spring 2007
90 mm of effective runoff

Modeled vs. Actual pond
depths
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Summary and future considerations

* Early runs of WATFLOOD allow for basin understanding and large-
scale simulations on the SSRB domain.

* Groundwater observations wells provide unique opportunity to
understand the groundwater system, lower storages and assess
vertical water budgets.

— Weighing lysimeter concept allows a relatively simple methodology to look
at the overall water balance on a footprint well aligned with the
WATFLOOD/MESH modeling system

— Validation show some deficiencies
* MESH coupled system tested on SSRB
— Validation of surface soil moisture using TDR seems reasonable
— Further validation is required
* Systematic treatment of no-contributing area is important.
— Detailed DEM provide insights into lateral flow mechanisms
— Difficult problem to characterize in larger scale models
— SPILL algorithm provides detailed histroy and conceptual curves
— Application in Tile-based system still needs to be refined



