Drought impacts on Prairie land surface hydrological dynamics

Kevin Shook, John W. Pomeroy, and Rob Armstrong

Centre for Hydrology, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan, Canada, S7N 5C8

Prairie hydrology of 1999-2005 drought

- Hydrology of the Canadian prairies is unique
- Dominated by small streams and wetlands which are ungauged
- Evaluation of hydrological effects of 1999-2005 drought will require modelling
- Ordinary models are useless for prairie conditions

Future climate scenarios

- Hydrological effects of future climate are also unknown in prairies
- Models developed for this project will also be used to determine effects of future climate changes on prairie hydrology

Canadian Prairie Hydrology

- Wind redistribution of snow to wetlands and stream channels in winter is critical to formation of runoff contributing areas.
- Frozen soils enhance runoff efficiency during spring snowmelt so that >80% of runoff occurs during snowmelt period.
- Contributing area small and variable due to post glacial topography, large depressional storage potential and lack of a well developed fluvial drainage network.
- Baseflow from groundwater often nonexistent due to heavy glacial till substrate.
- Drainage of small streams and wetlands ceases completely in summer when actual evapotranspiration consumes most available water.
- Prairie streams are almost completely ungauged and often altered by dams, drainage, water transfers, etc.

Prairie Runoff Generation

Snow Redistribution to Channels

o pung

Water Storage in Wetlands

Modelling Prairie Hydrology

- Need a physical basis to calculate the effects of changing climate, land use, wetland drainage
- Need to incorporate key prairie hydrology processes: snow redistribution, frozen soils, spring runoff, wetland fill and spill, noncontributing areas
- Hydrological models developed elsewhere do not have these features and fail in this environment
- Streamflow calibration does not provide information on basin non-contributing areas and is not suitable for change analysis

Cold Regions Hydrological Model Platform: CRHM

- Modular purpose built from C++ modules
- Modules based upon +45 years of prairie hydrology research at Univ of Saskatchewan
- No provision for calibration or optimization, parameters set by knowledge
- Hydrological Response Unit (HRU) basis
 - landscape unit with characteristic hydrological processes
 - single parameter set
 - horizontal interaction along flow cascade matrix
 - Model tracks state variables and flows for HRU
- HRUs assumed to represent one response type, basis for coupled energy and mass balance
- HRUs connected aerodynamically for blowing snow and via dynamic drainage networks for streamflow
- Incorporate wetlands directly using fill and spill algorithm

"Virtual" basins

- The spatial variability of the drought will be simulated using models of two typical prairie basins:
 - 1.a small upland stream, and
 - 2.a small wetland complex
- The virtual basins will be simulated all over the praries, wherever sets of forcing variables are available
- Outputs during the drought period will be compared to the climate normal period of 1961-1990

CRHM model of small prairie stream basin

Small stream basin

CRHM model

- HRUs 1 and 2 alternate between cropped and fallow
- HRU3 is grassed

CRHM model of small prairie wetland

Small wetland complex

CRHM model

cropped and fallow

HRUs 2-4 are wetlands

CRHM data requirements

- CRHM requires only a few variables:
 - Daily
- Snowfall
- Hourly
 - Rainfall, Air temperature, RH, Windspeed, Solar radiation
- Solar radiation required for modelling snow melt, evaporation and other processes
 - Currently, measurements are only available at Regina

Simulated Data

NARR

- Available as daily or 3-hour values
- 32 km grid
- All required variables available, since 1979
- Free!
- but
 - Canadian precipitation data not assimilated by NARR
 - Windspeeds and precipitation are unusable

Estimation of Qsi

- Incoming short-wave radiation (Q_{si}) can be calculated directly if the atmospheric transmittence is known
- Many researchers have found simple empirical relationships between daily atmospheric transmittance and the range of daily air temperatures (ΔT)
- Given the daily estimated Q_{si}, CRHM can calculate the hourly components of the solar radiation (incoming, outgoing, shortwave and longwave)

Annandale Daily Qsi

- Annandale method 400 yields daily Qsi values about as good 300 as NARR's Annandale simulated QsiD
- Effects of scatter even out over a season
- Very simple to calculate
- Now built into CRHM

Brandon HRU1 SWE

Gridded simulation results

- Drought period values divided by normals for ease of comparison
- Resulting values gridded (thin-plate spline) to show spatial variability

Summary

- Simulations have been run at all 15 locations using the first CRHM model
- Simulation results are preliminary
- The spatial and temporal extents of the hydrological drought can now be visualised
- Second CRHM model has yet to be used

Acknowlegements

- SGI Canada
- DRI
- Data Access Integration

 (http://quebec.ccsn.ca/DAI/) for data

Apart from CRHM, this research was done entirely with Open Source Software:

- R data reduction, statistics
- Qgis, SAGA GIS
- Open Office presentation