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ABSTRACT 

 Hydrological models have been developed to estimate snow 

accumulation, snowmelt and snowmelt runoff on the Canadian Prairies; 

however, their proper scale of application is unknown in the Prairie 

environment. The first objective of this thesis is to examine the proper scale 

for pre-melt snow accumulation as snow water equivalent (SWE) and 

snowmelt in a Prairie first order basin. Spatially distributed and spatially 

aggregated approaches were used to calculate SWE and snowmelt at St. Denis 

National Wildlife Area (SDNWA). Both approaches used models with similar 

physics, but differed in the model scale at which calculations were carried out. 

The simulated pre-melt SWE, cumulative seasonal SWE, and daily snowmelt 

from the two modelling approaches were compared to field observations of 

pre-melt SWE, cumulative seasonal SWE, and daily snowmelt; comparisons 

of areal cumulative seasonal SWE, areal snowmelt, snowmelt duration, and 

snow-covered area were also conducted between two modelling approaches. 

Results from these comparisons showed that both approaches had reasonable 

and similar accuracy in estimation of SWE and snowmelt. The spatially 

aggregated approach was more computationally efficient and was selected as a 

modelling scale for small-sized prairie basins. 

Another objective of this thesis is to derive a snow hydrology model 

for the Canadian Prairies. Physically-based hydrological models were 

assembled in the Cold Regions Hydrological Model Platform (CRHM) using 

the aggregated approach. Tests of pre-melt SWE and surface snowmelt runoff 
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were conducted at two basins in Saskatchewan – Creighton Tributary of Bad 

Lake and Wetland 109, St. Denis. Results showed that the snow hydrology 

model had a reasonable capability to simulate SWE and snowmelt runoff to 

the stream and wetland. 

Droughts are natural hazards that develop frequently on the Canadian 

Prairies. Analyzing the impact of drought on hydrological processes and water 

supply is another objective of this thesis. Synthetic drought scenarios were 

proposed for the Creighton Tributary of Bad Lake and the corresponding 

impacts on the snowmelt runoff-related processes were examined. Results 

indicated that wind redistribution of snow was very sensitive to drought 

conditions, sublimation of blowing snow and snow-covered period were 

sensitive to drought, but winter evaporation and infiltration did not show 

strong trend. The results also showed that drought conditions had magnified 

effects on the snowmelt runoff and could cause cessation of streamflow. Also, 

the impacts of the recent 1999-2005 drought on the snowmelt hydrology were 

investigated at St. Denis. Results illustrated that three-years (1999-2002) of 

severe winter drought were followed by a normal year (2002-03) and then a 

two-year (2003-05) recovery period, and then returning to normal (2005-06). 

Results showed that both snowfall and rainfall during hydrological winter 

were consistently low for severe drought and surface snowmelt runoff was 

very much lower during severe drought, about 45-65 mm less compared to 

that in the normal periods.  
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Chapter 1 

1.0 Introduction and Objectives 

1.1 Introduction 

 The Prairies of Canada lie in the southern part of provinces of Alberta, 

Saskatchewan, and Manitoba and are characterized with relatively low 

precipitation especially in the west part due to the barrier effect imposed by 

the Rockies. Snow is an important water resource on the Canadian Prairies. 

Annual precipitation in the prairie region of Saskatchewan ranges from 300-

400 mm (Pomeroy et al., 2007a); approximately one third of that occurs as 

snow, which produces 80% or more of annual local surface runoff (Gray and 

Landine, 1988). The Prairies are a cold region of Canada that has a long snow-

covered, frozen season. Great variation in the hydrology exists across the 

Prairies, with relatively well-drained, semi-arid basins in the southwestern 

part and with many wetlands and lakes in the sub-humid east-central part 

(Pomeroy et al., 2007a). Some of unique hydrological features of the Prairies 

are: 

 long winters (usually 4-5 months) with mid-winter melt (frequent in the 

southwest and infrequent in the northeast) (Pomeroy et al., 2007a), 
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 wind redistribution and sublimation of snow and heterogeneous 

distribution of snow accumulation due to local topography and land covers 

(Pomeroy et al., 1993), 

 high surface runoff from snowmelt as a result of frozen mineral soils 

(Gray et al., 1985), 

 melt water from shallow snowcovers forming a major source of water 

supply and also resulting in local flooding (Norum et al., 1976), which is 

controlled by both snow accumulation and snowmelt infiltration (Gray et 

al., 1985), 

 numerous small depressions such as wetlands, potholes and dugouts that 

are internally drained, resulting in closed drainage basins (Hayashi et al., 

2003),  which are non-contributing areas to prairie streamflow (Godwin 

and Martin, 1975). 

Studies on the modelling of the hydrological processes on the 

Canadian Prairies have been conducted for decades. Wind redistribution of 

snow has been investigated extensively; the Prairie Blowing Snow Model 

(PBSM) was developed by Pomeroy (1988) and many studies were conducted 

to advance the knowledge of snow accumulation in the windy prairie 

environment (Pomeroy et al., 1993; Pomeroy and Gray, 1995; Li and 

Pomeroy, 1997a, 1997b). The recent development of PBSM showed 

reasonable estimations of areal snow accumulation on the Prairies (Pomeroy 

and Li, 2000). The Energy-Budget Snowmelt Model (EBSM) was developed 

by Gray and Landine (1988) and was used to estimate snowmelt on the 
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Canadian Prairies. Through intense field studies of snowmelt infiltration into 

the unsaturated frozen prairies soils, Gray et al. (1985) derived an equation for 

estimating snowmelt infiltration of limited infiltrability soils on the Prairies; a 

parametric equation for snowmelt infiltration was developed by Zhao and 

Gray (1999) and was used for areal estimation of infiltration over the prairie 

regions (Gray et al., 2001). These models were assembled in the Cold Regions 

Hydrological Model Platform (CRHM) with the Granger-Gray evaporation 

expression for actual evaporation from unsaturated surfaces (Granger and 

Pomeroy, 1997), a soil moisture balance model (Leavesley et al., 1983), 

Clark’s lag and route runoff timing estimation procedure (Clark, 1945) along 

with models for radiation estimation and albedo changes (Garnier and Ohmura, 

1970; Gray and Landine, 1987; Granger and Gray, 1990). CRHM runs on 

basins which are broken down into Hydrological Response Units (HRUs) 

spatial units. HRUs are the smallest land units having definable hydrological 

characteristics such as land cover, slope, aspect, and elevation and need not 

directly drain to any stream or wetland – hence they can be used to determine 

contributing area for medium sized basins. Preliminary tests have been 

conducted to evaluate the performance of CRHM in calculating the water 

balances for cold regions, showing reasonable results for estimates of snow 

accumulation, snowmelt, spring snowmelt runoff, and streamflow when 

compared to recorded data (Dornes et al., 2006; Pomeroy et al., 2007b). 

Runoff generation in the Prairies is affected by the climate variation 

over the region. Much of the Prairies lies in the Palliser Triangle, where 
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droughts develop frequently. Over half the years of three decades, 1910-1920, 

1930-1939, and 1980-1989 were in drought (Nkemdirim and Weber, 1999) 

and the drought of 1999-2004 was the most recent (Bonsal and Wheaton, 

2005). Many Prairie winter hydrological processes: blowing snow transport, 

blowing snow sublimation, snowmelt, snowmelt infiltration, and snowmelt 

runoff are sensitive to meteorological and hydrological changes during the 

drought. Springtime stream discharge drops under warmer and drier 

conditions during the drought. Thus, water supply to the prairie streams and 

wetlands which are natural habitats for wildlife is under tremendous stress 

during the drought. 

 

1.2 Objectives 

 Due to the importance of snow and snowmelt water for the water 

resources of the Canadian Prairies, it is necessary to improve and verify the 

estimating method for snow accumulation and snowmelt. The Canadian 

Prairies have many internally drained basins, thus deriving a physically-based 

runoff model that is relevant to this type of basin is essential. Also, improving 

the understanding of drought impacts on prairie hydrology is important to 

providing better management of water resources to cope with future drought. 

In light of these issues, the objectives of this thesis are to: 

1. Compare the spatially modelling scale for snow accumulation and 

snowmelt and recommend an appropriate scale for a Prairie first 

order basin. 
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2. Derive and test a Prairie snow hydrology model. 

3. Analyze the impact of drought on hydrological processes that 

control snowmelt runoff generation in respect to Prairie drainage 

basins. 
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Chapter 2 

2.0 Literature Review 

2.1 Snow Accumulation 

 Snow is an important water resource on the Canadian Prairies. 

Approximately one third of annual precipitation occurs as snowfall, which 

produces 80% or more of annual local surface runoff (Gray and Landine, 1988; 

Pomeroy and Goodison, 1997). There are three scales describing the spatial 

variability of snow accumulation – micro (10 to 100 m), meso (100 m to 10 

km), and macro (10 to 1,000 km) (Pomeroy and Gray, 1995). Snow 

accumulation is highly heterogeneous at micro and meso scales on the 

Canadian Prairies, due to wind redistribution of snow which is known as 

blowing snow. Redistribution is primarily from open, well exposed sites to 

sheltered or vegetated sites. There are three modes of movement involved in 

the transport of blowing snow – creep, saltation, and suspension (Pomeroy 

and Gray, 1995). Even though small scale heterogeneity in snow accumulation 

is caused by snow transport; sublimation of blowing snow contributes 

substantially to over-winter ablation. Seasonal sublimation of blowing snow is 

equivalent to 15%-40% of the seasonal snowfall on the Canadian Prairies 

(Pomeroy and Gray, 1995). Blowing snow can transport and sublimate as 
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much as 75% of annual snowfall from open, exposed fallow fields in southern 

Saskatchewan (Pomeroy and Gray, 1995).  

 On the Canadian Prairies topography and land cover strongly influence 

blowing snow, because both induce variations in wind speed. In absence of 

vegetation cover, a leeward slope has much higher snow accumulation than 

does a windward slope (Steppuhn, 1981; Pomeroy and Gray, 1995). Studies 

among others by Lapen and Martz (1996) also showed similar findings, 

suggesting that the spatial distribution of snow depth in a Prairie agricultural 

landscape was strongly affected by the orientation of slopes with respect to 

directions of wind transport, and their relative position to other topographic 

features. Different land covers impose variations in surface roughness, which 

in turn causes wind speed and snow accumulation to change. Pomeroy et al. 

(1990) found in southern Saskatchewan wheat stubble fields had substantially 

less loss to blowing snow compared to fallow fields. Vegetation height in 

these agricultural fields plays important roles. As the stubble height increased 

from 1 to 40 cm on agricultural fields nearby Regina, the loss by blowing 

snow decreased by about 22% of the mean seasonal snowfall (Pomeroy et al., 

1990). At Bad Lake, Saskatchewan, snow accumulation in the depressions 

with tall shrubs increased by approximately 50% to 100% of seasonal 

snowfall attributed to transport of blowing snow (Pomeroy et al., 1998).  

 The Prairie Blowing Snow Model (PBSM) was developed by Pomeroy 

(1988), assembling physically based algorithms to estimate seasonal snow 

accumulation on Canadian Prairies. The algorithms estimate snow 
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accumulation flux, QA, by calculating saltation, suspension and sublimation 

rates of blowing snow described by Pomeroy et al. (1998; 1999) as: 

( ) (0)( ) R R
A

Q F QQ F P Q
F E
−

= − −                                         [2.1] 

where P is precipitation rate (kg m-2 s-1), F is fetch distance of blowing snow 

(m) which is the distance with non-disruptive wind distribution, QR is 

downwind blowing snow transport (saltation and suspension) flux (kg m-2 s-1), 

creep is not counted because it comprises a very small portion of total 

transport, and QE is sublimation flux (kg m-2 s-1). A control volume concept 

shown in Figure 2.1 is applied to estimate the mass fluxes of blowing snow 

over a component of the landscape (Pomeroy and Li, 2000). 

     

Figure 2.1 Cross-sectional view of control volume for blowing snow mass 
fluxes. 
 

 

Individual  fluxes  of  blowing  snow  are  described  by Pomeroy et al.  
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(1993) in the Prairie Blowing Snow Model (PBSM), which calculates the 

fluxes of transport by the following equation: 

  QR = Qsalt + Qsusp               [2.2] 

where Qsalt and Qsusp are the fluxes of saltation and suspension, respectively.  

The flux of saltation is estimated by the following equation: 

( )
*

*2 *2 *2
*

salt t
salt n t

C uQ u u
u g
ρ

= − u−               [2.3] 

where: Qsalt = saltation transport rate (kg m-1 s-1), 
 Csalt  = empirical constant (0.68 m s-1), 
 ρ = atmospheric density (kg m-3), 
 g = gravitational acceleration (m s-2), 
 u* = atmospheric friction velocity (m s-1), 
 un

* = friction velocity applied to non-erodible surface elements 
(m s-1), and 

 ut
* = threshold friction velocity (m s-1). 

 
Equation [2.3] was formulated by Pomeroy and Gray (1990); it applied 

Bagnold’s framework (1954) for calculating the transport rate of saltating sand 

to saltating snow and included the total atmospheric shear stress, τ, shear 

stress applied to non-erodible surface elements, τn, and shear stress applied to 

erodible surface elements, τt, to estimate the mean weight of saltating snow. 

The various types of shear stress are related to the corresponding friction 

velocity – u*, un
*, and ut

*. The atmospheric friction velocity is calculated as a 

function of the wind speed profile: 

  *

0

ln[ ]
zu ku z
z

=                            [2.4] 

where: uz = wind speed at height of z (m s-1), 
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 k = von Kármán’s constant (0.4), 
 z0 = aerodynamic roughness height (m). 
 

The non-erodible friction velocity, un
*, was found to be equal to zero 

for complete snowcovers without exposed vegetation; the threshold friction 

velocity, ut
*, is the friction velocity at which transport ceases and was found in 

the range of 0.07-0.25 m s-1 for fresh, loose snow and a higher range of 0.25-

1.0 m s-1 for old, dense snow (Pomeroy and Gray, 1990). Li and Pomeroy 

(1997a) derived a relation between ut
* and air temperature (°C), T at the two 

metre height: 

  
2

* 0.35
150 8200t
T Tu = + +              [2.5] 

The equation [2.5] provides a direct method to calculate threshold condition 

for blowing transport from meteorological data. 

The flux of suspension is estimated by the following equation: 

*

*

0

( ) ln( )
bz

susp
h

u zQ z
k z

η= ∫ dz               [2.6] 

where:  Qsusp = suspension transport rate (kg m-1 s-1), 
 u* = atmospheric friction velocity (m s-1), 
 k = von Kármán’s constant (0.4), 
 zb = upper boundary of suspension (m), 
 h* = lower boundary of suspension (m), 
 η(z) = mass concentration of suspended snow (kg m-3) at height z,  
     and  
 z0 = aerodynamic roughness height (m). 
 
Pomeroy and Gray (1990) found an expression for the aerodynamic roughness 

height over complete snowcovers as a function of atmospheric friction 

velocity, u*: 
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2*

0 0.1203
2
uz

g
=                 [2.7] 

The lower boundary of suspension, h*, which defines the saltation-suspension 

interface, was found to relate to atmospheric friction velocity, u*: 

                 [2.8]      
1.27* *0.08436h u=

Pomeroy and Male (1992) developed an analytical expression relating the 

mass concentration of suspended snow to height, z, and atmospheric friction 

velocity, u*: 

               [2.9] * 0.544 0.544( ) 0.8exp[ 1.55(4.784 )]z uη − −= − − z

PBSM models sublimation rate based on the energy equilibrium of 

radiation, convection of snow particles, water vaporation from snow particles, 

and sublimation (Pomeroy, 1988). The sublimation rate is approximated by 

the following equation: 

2 - -1

1-1

sr

T

s s

T s

L MQr
TNu RTdm

L L Mdt
TNu RT D Sh

π σ
λ

λ ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞ +⎜ ⎟
⎝ ⎠

            [2.10] 

where:  r = radius of a snow particle possessing mass, m (μm), 
 σ = ambient atmospheric undersaturation of water vapour with  
     respect to ice (dimensionless), 
 Qr = radiative energy absorbed by the particle (J s-1 m-2), 
 Ls = latent heat of sublimation (2.838 × 106 J kg-1), 
 M = molecular weight of water (18.01 kg mol-1), 
 λT = thermal conductivity of the atmosphere (λT = 0.00063T +  
     0.0673) (J s-1 m-1 K-1), 
 Nu = Nusselt number (dimensionless), 
 R = universal gas constant (8313 J mol-1 K-1), 
 T = ambient atmospheric temperature (K), 
 ρs = saturation density of water vapour at T (kg m-3), 
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 D = diffusivity of water vapour (m2 s-1), and 
 Sh = Sherwood number (dimensionless). 
 

Estimation of the blowing snow fluxes based on Equations [2.3], [2.6], 

and [2.10] with an assumption of horizontal steady flow, does not generate 

adequate and accurate information of snow accumulation over landscapes 

having different fetch and land use. Upscaling of blowing snow transport and 

sublimation estimations is related to the variability of blowing snow transport 

and sublimation over open snow areas, increase in transport and sublimation 

with fetch and the influence of exposed vegetation on available shear stress to 

drive transport (Pomeroy and Li, 2000). Pomeroy et al. (1997) developed a 

simple scheme to address the calculation of areal snow mass balance based on 

monthly climatologic expressions of blowing snow transport and sublimation, 

which are not directly applicable for other atmospheric and hydrological 

models due to their empirical nature and monthly time step but provide the 

basis to distribute blowing snow over landscape (Pomeroy and Li, 2000).  

Li and Pomeroy (1997b) found that the probability of blowing snow 

occurrence followed a cumulative normal distribution with regard to the mean 

wind speed, umean, and the standard deviation δ of wind speed, u, as: 

  
2

2
( )

2

0

1 exp
2

meanu uu

p duδ

δ π

−
−

= ∫                                                 [2.11] 

Based on an extensive study on the Canadian Prairies, they found the mean 

wind speed and the standard deviation of wind speed were functions of snow 

conditions and air temperature. For wet snow, the values of 21 and 7 m s-1 
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were found for the mean and standard deviation of wind speed, respectively. 

For dry snowpacks, the mean and variance of wind speed were associated to 

air temperature (°C), T, and snow age index, I, as follows: 

             [2.12] 20.365 0.00706 0.9 11.2meanu T T I= + + +

              [2.13] 20.145 0.00196 4.3T Tδ = + +

Equation [2.11] allows the application of blowing snow fluxes calculation 

from the meteorological data and provides a technique for approximating areal 

blowing snow fluxes from a point. The estimation of snow mass balance using 

this technique was conducted in the Canadian Arctic and Prairies (Pomeroy 

and Li, 2000). 

Other methods have been developed and applied to simulate seasonal 

snow accumulation. The Simplified Blowing Snow Model (SBSM), an 

efficient parametric routine for estimating snow mass owing to surface 

roughness change based on the physically-based PBSM, reproduces PBSM 

results closely with less computational cost (Essery et al., 1999). The 

windflow model can be used to estimate the wind speed variation due to local 

topography, which is important in simulating areal snow accumulation. The 

model of Mason and Sykes (1979), referred as MS, is a computational routine 

for estimating windflow over three-dimensional topography, which is 

extended from a two-dimensional theory of Jackson and Hunt (1975) for 

turbulent flow over a shallow hill. The MS windflow model is based on 

Fourier transform techniques and has a division of the inner and outer flow 
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regions. The MS model is linearized and thus only applies to low hills; it 

assumes neutral thermal stratification and uniform surface roughness within 

the simulation region. The MS model calculates normalized westerly and 

southerly wind components along with normalized wind speed due to 

changing topography. The normalized wind speed is inputted in the snow 

mass simulation model to adjust the wind speed. The MS model is potentially 

computational costly and Walmsley et al. (1989) derived a simple parametric 

version of the MS model for estimating wind speed variation induced by 

small-scale topographic features; this version simplified the calculation 

procedures and data requirement and is only applied to calculations at a coarse 

scale. At coarse scales, it has very similar results compared to those from the 

MS model (Walmsley et al., 1989). The Distributed Blowing Snow Model 

(DBSM) is a physically-based model that simulates the development of 

snowcovers affected by wind over landscapes having variations in topography 

and vegetation cover. DBSM was developed by combining SBSM with 

Walmsley’s windflow model and showed reasonable capability to simulate 

seasonal snow accumulation in Canadian arctic open environments (Essery et 

al., 1999). A detailed description of DBSM is given by Essery et al. (1999), 

Essery and Pomeroy (2004). Essery (2006) developed the latest portable 

version of DBSM, which includes the MS windflow model as a windflow 

simulating component and SBSM as a snow mass simulating component. This 

version of DBSM computes wind speed and snow accumulation on the same 
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grid cells; it has not yet been evaluated in Canadian prairie open environment 

or Canadian arctic open environment. 

 

2.2 Snowmelt 

 Snowmelt is one of the most important hydrological events on 

Canadian Prairies. Meltwater from snow recharges soil moisture and 

groundwater storage through infiltration, and replenishes reservoirs, lakes, and 

rivers through surface runoff (Norum et al., 1976). The amount of water from 

snowmelt is controlled by the net energy flux at the snow surface, and 

meltwater is produced when snow pack is at a temperature of 0○C (Male and 

Gray, 1981) or even when temperature of snow pack is below 0○C (Marsh and 

Woo, 1984). Snowmelt involves phase changes and hence the energy equation 

is the physical framework for snowmelt estimation (Granger et al., 1977; 

Granger and Male, 1978; Gray and Landine, 1988). The energy equation is 

based upon the law of conservation of energy for a control volume of snow, 

and this volume has a snow-ground interface and a snow-air interface as its 

lower and upper boundaries, respectively (Figure 2.2). The energy budget for 

calculating snowmelt involves energy and mass fluxes via radiation, 

convection, conduction, and advection along with a change in internal energy 

(Gray and Landine, 1988). The equation for the energy budget is expressed as: 

Qm = Qn + Qh + Qe + Qg + Qp + QA – ∆U/∆t                     [2.14] 

where:     Qm  = energy flux available for snowmelt (W m-2), 
     Qn  = net radiation flux (W m-2), 
     Qh  = convective flux of sensible heat (W m-2), 
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     Qe  = convective flux of latent heat (W m-2), 
     Qg  = conductive flux of ground flux (W m-2), 

    Qp  = advection from rain in vertical direction (W m-2), 
                QA = small-scale advection from patches of soils in           
                                       horizontal direction (W m-2), 

   ∆U/∆t = rate of change in internal energy (W m-2). 
 

In applying Equation [2.14], the fluxes of energy directed towards the snow 

pack are taken as positive. Individual terms in the energy budget equation can 

be determined by existing equations. 

       

Figure 2.2 Cross-sectional view of control volume for snowmelt energy. 
 
 

 Net radiation, Qn, is the total of the net short-wave, Qsn, and net long-

wave, Qln, expressed as: 

  Qn = Qsn + Qln                          [2.15] 

where the net long-wave is normally negative and the energy fluxes directed 

towards the snow pack are considered as positive. The net short-wave is the 

incident short-wave flux received by the surface, Qs, less the short-wave flux 

reflected by the surface, Qr; the reflected short-wave energy is a fraction of 
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the incident short-wave, which is expressed as the albedo of snow, αs, 

normally in the range of 0.65-0.95 depending on the age of snow. Thus, the 

net-short wave is expressed as: 

  Qsn = Qs(1 – αs)              [2.16] 

The incident short-wave flux, Qs, is the sum of direct beam, Qdrs, and diffuse, 

Qdfs components, expressed as: 

  Qs = Qdrs + Qdfs              [2.17] 

With cloud cover, the amount of direct beam short-wave flux is reduced and 

can be found to be a function of the direct beam short-wave radiation under 

clear sky, Qdro, as: 

  [ ( )c
drs dro

nQ Q a b
N

= + ]                         [2.18] 

where n/N is the sunshine ratio; a, b, and c are coefficients and were found to 

equal 0.024, 0.974, and 1.35, respectively, for the southwestern prairie region 

of Saskatchewan (Granger and Gray, 1990). The direct beam short-wave 

radiation under clear sky, Qdro, can be estimated by the expression developed 

by Garnier and Ohmura (1970). Atmospheric constituents such as dust 

particles, water droplets, and ice crystals, reduce the transmissivity for beam 

radiation and increase scattering and diffusion. Granger and Gray (1990) 

derived a relation for estimating the diffuse flux with cloud cover, Qdfs, as a 

function of diffuse radiation under clear sky, Qdfo, and the sunshine ratio, n/N, 

as: 
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  2[2.68 2.2( ) 3.85( ) ]dfs dfo
n nQ Q
N N

= + −            [2.19] 

The clear-sky diffuse radiation, Qdfo, can be the expression derived by Granger 

and Gray (1990) that relates Qdfo to the atmospheric pressure ratio, cosine of 

the angle of incidence of the sun’s rays on a slope, and day of year. The net 

long-wave flux, Qln, is the sum of the downward radiation emitted by the 

atmosphere, Ql↓, and the upward radiation emitted by the surface, Ql↑. Due to 

the influence of diurnal changing temperature on the internal energy content 

of shallow snowcovers, it is important to incorporate long-wave fluxes into 

the snowmelt estimation. Granger and Gray (1990) developed an expression 

for calculating the net long-wave flux under cloud cover, Qln, for the 

southwestern prairie region of Saskatchewan as: 

  ln ln [0.25 0.75( )]o
nQ Q
N

= +              [2.20] 

where n/N is the sunshine ratio; Qlno is the clear sky net long-wave radiation, 

estimated by the following expression relating to the clear sky short-wave 

radiation, Qso: 

               [2.21] ln 4.25 0.24oQ Q= − − so

In addition to the net radiation flux, convective fluxes are also 

important in snowmelt calculations. Male and Gray (1981) outlined simplified 

bulk transfer expressions for calculating convective sensible heat flux Qh and 

latent heat flux Qe: 

  Qh = DhUz(Ta – Ts)                    [2.22] 
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Qe = DeUz(es – pa)                          [2.23] 
 
where:  Dh  = bulk transfer coefficient for sensible heat transfer   
                                       (kJ m-3 °C-1), 
  De = bulk transfer coefficient for latent heat transfer          
                                       (kJ m-3 °C-1), 
  Uz = wind speed at a reference height (m s-1), 
  Ta, Ts = temperature of the air and the snow surface,  
                                       respectively (°C), 
  pa, es = vapour pressures of the air and snow surface,  
                                       respectively (mb). 
 
Ground heat flux Qg and internal energy U are estimated by the following 

equations (Male and Gray, 1981): 

  Qg = -k(∂Tg/∂z)              [2.24] 
 
where:  k = thermal conductivity (W m-1 °C-1), 
  Tg  = ground temperature (°C), 
  Z = depth (m). 
 

U = d(ρiCPi +ρlCPl +ρvCPv)Tm                                  [2.25] 
 
where:   d  = depth of snow (m), 

ρ  = density (kg m-3), 
CP   = specific heat (kJ kg-1 °C-1), 
Tm  = mean snow temperature (°C), and 
i, l, v  = ice, liquid and vapor phases, respectively. 

 
When rain falls on a melting snow pack where the rain does not freeze, the 

advection flux from rain is estimated by the following equation (Male and 

Gray, 1981): 

   Qp = 4.2(Tr – Ts)Pr              [2.26] 
 
where:  Tr = temperature of the rain (°C), 
  Ts = snow temperature (°C), and 
  Pr = depth of rain (mm day-1). 
 
When patches of bare soils and snowcovers appear, the amount of energy 

transferred from the patchy bare soils to patchy snowcovers is important for 
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melting snow. This horizontal advection flux QA is estimated as the change of 

sensible heat from upwind edge of snowcovers to downwind edge of 

snowcovers over the length of snowcovers (Granger et al., 2002). That is: 

  b
A sQ aX=                          [2.27] 

 
where:  Xs = horizontal distance between upwind and downwind  

               edges of snowcovers (m), 
a, b = Weisman’s dimensionless coefficients. 

 
The amount of melt can be calculated from Qm by the equation: 

  m

w f

QM
Bhρ

=               [2.28] 

where:  ρw = density of water (1000 kg m-3), 
  B = fraction of ice in a unit of wet snow (0.95 → 0.97), 
  hf = latent heat of fusion of ice (333.5 kJ kg-1). 
 

On Canadian Prairies snowcovers are relatively shallow compared to 

mountain snowcovers and some energy components dominate melting 

processes while other components are minor contributors. In the Prairie 

environment, net radiation (short- and long-wave) is the primary factor 

affecting snow ablation rate and convective energy (sensible and latent heat) is 

usually a secondary factor as the convective fluxes are of opposite sign and 

similar magnitude. Ground heat is small compared to others (Granger et al., 

1977; Male and Granger, 1981; Gray and Landine, 1988). Average daily 

ground heat fluxes are within range of 0-4.6 W m-2 (Pomeroy et al., 1998). 

Many studies have been taken to develop a physically based model to 

estimate springtime snowmelt on Canadian Prairies for decades. Gray and 

Landine (1987) investigated the albedo-depletion of seasonal snow covers on 
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the prairies and developed algorithms for determining the onset and duration 

of snowmelt events. This albedo-depletion routine was applied to estimate the 

daily net radiation associated with prairie snowmelt (Granger and Gray, 1990). 

Gray and Landine (1988) suggested that temperature-index snowmelt 

approaches (e.g. Anderson, 1973) do not usually work properly in the open 

environments due to the lack of correlation between radiative and convective 

energy exchanges in such environments. They developed the Energy-Budget 

Snowmelt Model (EBSM) for estimating melt from shallow prairie snow 

covers by examining radiative, convective, advective, and internal energy 

based on standard climatological measurements. Local scale advection is also 

an important flux for melting snow in the patchy soil and snow-covered area. 

Shook (1995) demonstrated reasonable ability of the Prairie Snow Ablation 

Simulation (PSAS) model in estimating small-scale advective heat from 

snow-free patches to snow-covered patches. Following that Shook and Gray 

(1997) applied an adjusted version of the Penman-Monteith equation to 

estimate the amount of energy for snowmelt from large- and small-scale 

advection. Granger et al. (2002) developed simple parametric expression for 

estimating the advective energy in melting snow as warming air moving from 

snow-free ground to snow patches. Essery et al. (2006) attempted a simple 

advection model with parameterizations for local surface fluxes on snow 

patches based on estimations of flux and temperature profiles in the internal 

boundary layers on snow-free and snow patches. 
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2.3 Snowmelt Infiltration into Frozen Prairie Soils 

 Snowmelt infiltration into frozen soils is an important hydrological 

event on the Canadian Prairies. It replenishes soil moisture and groundwater 

storage used for plant growth, agricultural water supply, and domestic 

consumption. It reduces the direct surface runoff and the magnitude of peak 

streamflow (Male and Gray, 1981). Infiltration is defined as the process by 

which water flows through the soils, involving three-step sequence: entry of 

water into the surface of the soil, transmission through the soil, and 

diminishing storage capacity in soil (Musgrave and Holtan, 1964). The 

process is governed by the combined influence of gravity and capillary forces 

(Gray et al., 1970; Kane and Stein, 1983). Frozen soils are common in 

northern high latitude regions, such as Canada and Russia. Through intense 

field studies of snowmelt infiltration carried out on agricultural land in 

Saskatchewan, Gray et al. (1985) proposed a classification that separates the 

seasonally frozen prairie soils to three groups depending on their infiltrability: 

restricted (no infiltration), limited (some infiltration, some runoff), and 

unlimited (all melt water infiltrates). It is a widely used classification (e.g. 

Gray et al., 1986, 2001; Zhao and Gray, 1997). 

 An unsaturated frozen soil system is by far the most complex soil 

system with two solid components: soil and ice, and two fluid components: 

water and air and yet this system is very common (Kane and Stein, 1983). 

Infiltration into such a system is a complicated process involving coupled heat 

and mass flow with phase changes (Zhao and Gray, 1997; Zhao et al., 1997; 
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Gray et al., 2001). Infiltration into unsaturated frozen soils can be described 

by two regimes: a transient regime and a quasi-steady-state regime. The 

transient regime follows immediately after the application of water; the 

infiltration rate decreases rapidly during this regime. The transient regime is 

followed by a quasi-steady-state regime in which changes in the infiltration 

rate with time are relatively small (Zhao and Gray, 1997; Zhao et al., 1997). 

The amount of unfrozen water in the soil is very important to the infiltration 

process. Zhao and Gray (1997) proposed a freezing point depression equation 

that can estimate the maximum liquid water content (θl) for a specific subzero 

temperature: 

1/

0

( 273.15) /[ il
l

h T T CRT
g

] λθ φ
ψ

−− +
=                                    [2.29] 

where:   ψ0   = air entry potential (m), 
  λ  = pore size distribution index (dimensionless), 
  Φ  = porosity (dimensionless), 
  hil  = enthalpy change from ice to liquid (J kg-1), 
  T  = temperature (K), 
  C  = heat capacity (J kg-1 K-1), 
  R  = gas constant (J kg-1 K-1), 
  g  = gravitational acceleration (m s-2). 
 
Equation [2.29] was established by Cary and Maryland (1972) based on the 

application of the Clausius-Clapeyron equation to the liquid-water-ice system 

of frozen soils assuming that unsaturated soils in unfrozen and frozen phases 

have the same soil matric potential function (Zhao and Gray, 1997). The 

amount of the unfrozen water has a direct impact on the hydraulic 

conductivity of frozen soils. Water transmission is strongly affected by 
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development of ice from freezing water in soil pores (Kane, 1980). Freezing 

an unfrozen soil with 91.7% water saturation can result in full ice saturation in 

frozen soils, because 9% of expansion in volume occurs as result of 

conversion of liquid water to ice (Andersland et al., 1996). 

 Factors affecting infiltration into frozen soils are those influencing 

both the water entry at the surface and the downward and lateral movement of 

wetting front within soil profile. On Canadian Prairies the most important soil 

factors are surface saturation (S0), initial soil moisture saturation in the upper 

soil layers (SI), initial soil temperature (TI), and soil cracks (macropores) 

(Zhao et al., 2002). Infiltration is positively related to S0 because the capillary 

pressure gradient rises and soil is more permeable as S0 increases and thus 

increases the quantity of infiltration (Zhao and Gray, 1997). Infiltration is 

inversely related to SI because increasing SI enhances ice formation within 

soil, suppressing the capillary pressure gradient and making soils less 

permeable and consequently infiltration decreases (Zhao and Gray, 1997; 

Gray et al., 2001). Infiltration decreases with decreasing TI because lower 

temperatures can cause greater freezing, causing soils to be less permeable. TI 

may be considered as a secondary factor affecting infiltration compared to S0 

and SI (Gray et al., 2001). Infiltration is greatly enhanced by cracks (Pomeroy 

et al., 1990). Soils with development of cracks are regarded as frozen soils of 

unlimited infiltrability, and almost all available melting water infiltrates into 

these soils (Gray et al., 2001). Soil texture is not a factor affecting infiltration 

into frozen soils of limited infiltrability; this is because the influence of 
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variations in soil texture on the frozen soils infiltrability is counteracted by the 

variations of other factors during infiltration, such as the rise in ratio of ice to 

liquid water (Zhao et al., 2002). 

 Modelling the infiltration into frozen soils has been investigated 

worldwide for decades. Motovilov (1978) examined a physically-based 

mathematical model to estimate water and heat transport in frozen soils. A 

one-dimensional mathematical model was developed by Engelmark (1984) to 

simulate vertical heat and moisture transfers along with phase change. 

Additional research on the modelling method and theory has been conducted 

by Engelmark and Svensson (1993), Flerchinger and Saxton (1989a, 1989b) 

and Flerchinger (2000). On the Canadian Prairies Granger et al. (1984) 

developed an empirical equation for estimating cumulative infiltration (INF) 

of limited infiltrability frozen soils based on the SWE and average pre-melt 

water and ice content of 0-300 mm soil layer (SI). Gray et al. (1985) derived 

its expression as: 

0.5845(1 )IINF S SWE= −             [2.30] 

Zhao et al. (1997) developed a physically-based finite difference numerical 

model, HAWTS (Heat And Water Transport in frozen Soils). The model 

estimates moisture movement related to sensible and latent heat transfers in 

frozen soils based on a set of partial differential equations. Zhao and Gray 

(1999) developed a parametric form of the HAWTS model that describes 

cumulative infiltration into frozen unsaturated soils of limited infiltrability as: 
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⎝ ⎠
             [2.31] 

where C is a constant and is found to be 2.10 and 1.14 for prairie and forest 

soils, respectively (Gray et al., 2001). S0 is the surface saturation (mm3 mm-3) 

and is assumed to be approximately equal to 1 in most situations that have low 

infiltration rates relative to the snowmelt rate (Gray et al., 2001). SI is the 

average soil saturation of the top 400 mm soil layer at the start of infiltration 

(mm3 mm-3) and is estimated from the average pre-melt volumetric moisture 

content (water + ice) (θI) divided by the soil porosity (Φ). θI can be 

approximated from the fall soil moisture θf based on empirical expressions 

developed from observation in the Prairies (Gray et al., 1985) as: 

5.08 1.05I fθ θ= − +   (for fallow fields)                               [2.32] 

0.294 0.957I fθ θ= +  (for stubble fields)                            [2.33] 

TI is the average initial temperature of top 400 mm of soil (K). t0 is the 

infiltration opportunity time (h) and approximately equals the time required to 

melt the snow cover and is estimated by the following equation: 

0
SWEt t
Melt

≅ =                [2.34] 

The assumptions made for the parametric equation are that the soil is 

homogeneous and isotropic, distributions of initial soil temperature and 

moisture are uniform, and melt water has a constant head at the soil surface 

(Zhao and Gray, 1999). 
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2.4 Surface Snowmelt Runoff 

 On the Canadian Prairies spring surface runoff from melting snow is 

an important resource to prairie streams and ponds. The accumulation and 

melt of snow is of primary importance in controlling prairie runoff generation 

(Norum et al., 1976). Snowmelt water produces more than 80% of annual 

runoff on the semi-arid Canadian Prairies (Granger et al., 1984; Gray and 

Landine, 1988; Pomeroy and Goodison, 1997). Springtime streamflow 

discharge and pond water levels are strongly affected by the melt water 

released from snowpacks (Gray et al., 1985; Woo and Rowsell, 1993; Hayashi 

et al., 2003). Snowmelt runoff volume and timing is controlled by melt rate, 

infiltration rate and surface storage. Runoff generation in springtime is 

influenced by land use (van der Kamp et al., 1999; 2003). In the semi-arid 

prairie environment, snowmelt runoff is very sensitive to the meteorological 

conditions and can completely cease under drought meteorology. 

 Snowmelt runoff simulations usually comprise a snowmelt simulation 

model and a runoff routing algorithm. The snowmelt model simulates the 

amount of melting water from snow available for runoff and the runoff routing 

algorithm transfers the available water from contributing areas to basin outlet 

(Donald et al., 1995). Digital Elevation Model (DEM) grid-based simulations 

have been applied in predicting runoff based on distributed energy balance 

calculation of snowmelt from input meteorological data and terrain 

information (Marks et al., 1998). The simulation of runoff generation at 

regional scales involves the integration of Land Surface Schemes and 
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distributed hydrological models (e.g. Soulis et al., 2000). 

 On the Canadian Prairies, various studies on simulating snowmelt 

runoff have been conducted. Gray et al. (1985) examined the hydrographs of 

streamflow from snowmelt based on modelling the loss of snowmelt to 

infiltration to frozen soils. Hayashi and van der Kamp (2000) developed a 

simple expression to estimate the volume of water in a wetland based on 

volume-area-depth relations. Hayashi et al. (2003) applied this expression to 

calculate the volume of water in wetlands from spring snowmelt runoff. Su et 

al. (2000) applied a semi-distributed hydrological model, SLURP (Simple 

Lumped Reservoir Parametric), to simulate hydrological processes in 

wetlands and to calculate water balance components such as precipitation, 

snowmelt, evaporation, surface runoff and subsurface flow. Recently, a 

modelling platform, Cold Regions Hydrological Model platform (CRHM) has 

been developed by Pomeroy et al. (2007b) and has been applied to prairie 

hydrology simulation. This modelling system incorporates all hydrological 

processes that are essential to snowmelt hydrology and simulates the energy 

and water balances of snow and soil based on physically based algorithms. 

CRHM has been tested showing reasonable performance in simulating prairie 

streamflow from surface snowmelt runoff at basin scale (Pomeroy et al., 

2007b). 

 

2.5 Drought on the Canadian Prairies 

 Drought is a natural hazard and is a normal part of climate (Wilhite 
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and Buchanan-Smith, 2005), but it can come to be a disaster when its impact 

on human society and environment becomes large (Maybank et al., 1995; 

Wilhite and Buchanan-Smith, 2005). Drought is a subtle and slowly-

developing condition, and it is difficult to declare the onset and the ending of 

drought (Maybank et al., 1995; Wilhite and Buchanan-Smith, 2005). The 

common features of drought are: above average air temperature, lack of 

precipitation, low soil moisture, and insufficient water supplies from the 

surface and subsurface (Nkemdirim and Weber, 1999; Wheaton et al., 1992; 

2005; Wilhite and Buchanan-Smith, 2005). There is lack of accurate and well-

accepted definition of drought because the definition is user and region 

specific (Maybank et al., 1995; Wilhite and Buchanan-Smith, 2005). 

According to different users and sectors, four types of drought can be defined 

(Wilhite and Glantz, 1985): 

♦ meteorological drought: below average precipitation over an extended 

period of time, 

♦ agricultural drought: decreased availability of soil water for supporting 

crop growth as a result of deficiency of precipitation over some period of 

time, 

♦ hydrological drought: insufficient surface and subsurface water supplies 

over some period of time, 

♦ socio-economic drought: interactions of human activity and society and 

drought and the impacts of meteorological, agricultural, and hydrological 
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drought on the human society. 

These types of drought are widely mentioned and used (Ripley, 1988; Wilhite 

and Buchanan-Smith, 2005). There are other types of drought; based on the 

criteria of persistence and pattern, drought can be classified as permanent 

drought, seasonal drought, and irregular drought (Thornthwaite, 1947; 

Whitmore, 2000). 

 To quantify the magnitude, duration, and severity of drought, drought 

indices are used. The drought index is derived from indicators based on 

meteorological and hydrological variables such as precipitation, streamflow, 

soil moisture, reservoir level, and groundwater level (Steinmann et al., 2005). 

Several drought indices have been developed and they have their advantages 

and drawbacks depending on the users and applications. One of the simplest 

meteorological drought indices is the percent of normal precipitation, which 

describes how the precipitation from a single season compares to a long term 

normal. However, seasonal precipitation does not have a normal distribution, 

thus, it is difficult to compare amongst different locations and seasons 

(Steinmann et al., 2005). McKee et al. (1993) developed another 

meteorological drought index, the Standardized Precipitation Index (SPI), to 

quantify precipitation deficits for any time scale based on probability 

distribution of precipitation over a long-term period. The SPI is time and 

location invariant, but it is not straightforward for decision makers to use 

(Steinmann et al., 2005). The most widely used meteorological drought index 

is the Palmer Drought Severity Index (PDSI) (Alley, 1984; Karl, 1986; 
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Nkemdirim and Weber, 1999; Steinmann et al., 2005). It was developed by 

Palmer (1965) to measure the departure of moisture supplies based on a 

moisture balance model, while the Palmer Hydrological Drought Index (PHDI) 

is a hydrological drought index derived from PDSI and is used to assess the 

moisture anomalies affecting streamflow, groundwater, and storage over 

longer period than that for PDSI (Steinmann et al., 2005). The values of PDSI 

and PHDI vary spatially and temporally; cumulative frequencies change over 

regions and time periods (Guttman et al., 1992; Nkemdirim and Weber, 1999; 

Steinmann et al., 2005). The Palmer indices do not include water storage, 

snowfall, snow cover, and frozen ground along with human impacts, and the 

indices do not consider the natural lag between precipitation, moisture surplus 

and streamflow, making them not suitable for water management systems 

when dealing with droughts (Alley, 1984; Guttman et al., 1992; Nkemdirim 

and Weber, 1999; Steinmann et al., 2005). These limitations are addressed by 

the Surface Water Supply Index (SWSI), a hydrological drought index 

developed by Shafer and Dezman (1982). However, there is a need to 

recalculate the index once the data source or water supply source is changed 

(Steinmann et al., 2005). 

 Droughts are frequent on the Canadian Prairies. Over half the years of 

three decades, 1910-1920, 1930-1939, and 1980-1989 were in drought 

(Nkemdirim and Weber, 1999) with the drought of 1961 considered as the 

most extensive single-year prairie drought in the 20th century (Maybank et al., 

1995). The drought of 1999-2004 was the most recent multi-year drought and 
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with 1999-2002 being the most severe on record in parts of the Prairies 

(Bonsal and Wheaton, 2005, Rannie, 2006).  

On the Canadian Prairies, severe drought occurs most often in the 

southern parts, coinciding with the Palliser Triangle, named after the British 

explorer Captain John Palliser (Nkemdirim and Weber, 1999). This region 

extends from the eastern slopes of the Rocky Mountains to the southwest 

corner of Manitoba. It is characterized by dry conditions in the winter, 

especially in the western part, due to atmospheric blocking imposed by the 

Rockies (Agriculture and Agri-Food Canada, 1998). Drought in this region is 

usually associated with large-scale disruptions of the atmospheric circulation 

pattern and displacement of air masses (Liu et al., 2004; Bonsal and Wheaton, 

2005; Shabbar, 2006). During the droughts of 1961 and 1988 in the Canadian 

Prairies, a strong association existed between warmer and drier conditions in 

the wintertime and the El Niño/Southern Oscillation (ENSO). This caused the 

jet stream over the North Pacific to split into two branches, one flowing over 

the Arctic and the other flowing over the Pacific, northwest United States and 

southwest Canada (Bonsal and Wheaton, 2005; Shabbar et al., 1997; Shabbar, 

2006). However, Bonsal and Wheaton (2005) showed that the northward 

extension of persistent drought circulation from the continental United States 

was the major factor influencing the recent drought of 1999-2002. 

Drought on the Canadian Prairies is featured by above-normal 

temperature and below-normal precipitation. During the drought of 1988, 

there was only 70-80% of normal snowfall east of the Rockies (Lawford, 
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1992); the agricultural region of prairies received less than 50% of normal 

snowfall (Wheaton et al., 1992). During 1999-2001 part of the Prairies 

experienced the driest condition in the 118 year record (Sauchyn et al., 2003). 

During the drought of 1988, mean temperatures for March, April and May 

were 2 to 4 °C higher than normal in most of Western Canada (Wheaton et al., 

1992), while slightly lower temperature anomalies, 0.5 to 1 °C above normal, 

existed in the recent drought of 2001-02, with the highest anomalies found in 

the winter season (Bonsal, 2005). Very low soil moisture reserves characterize 

drought (Lawford, 1992; Nkemdirim and Weber, 1999); the combination of 

this low soil moisture condition with drier and warmer atmospheric conditions 

results in little runoff from snowmelt and the drying out of wetlands and 

streams (Nkemdirim and Weber, 1999; Rannie, 2006).  

Beyond these meteorological and hydrological impacts, tremendous 

socio-economic stresses have been imposed by drought. A loss in agricultural 

production over Canada by an estimated $3.6 billion in 2001-2002 was 

attributed to this drought (Wheaton et al., 2005). In light of this shortfall, a 

new Canadian based research network, Drought Research Initiative (DRI) was 

established to improve the understanding of the physical characteristics and 

processes affecting droughts on the Canadian Prairie. 
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Chapter 3 

3.0 Study Site and Field Observations 

3.1 Study Sites Description 

Two sites were chosen to conduct this study: Bad Lake, in the semi-

arid, well drained prairie region and St. Denis, in the sub-humid, poorly and 

internally drained prairie region. 

 Creighton Tributary of Bad Lake International Hydrological Decade 

(IHD) Research Basin.  Bad Lake (51º23’N, 108º26’W, 650 m a.s.l.) is an 

internally drained basin near Totnes in south-western Saskatchewan, Canada 

(Figure 3.1). Creighton is a small basin (11.4 km2), within which silty clay 

and clay loams are the two dominant soils (Gray et al., 1985). Approximately 

85% of the basin area was cultivated land (stubble and fallow fields), and the 

rest of basin consisted of grassland for the periods of study (Gray et al., 1985). 

The basin is characterized with level open land with poor drainage and 

highland with rolling topography; it is drained by a grassland “coulee” (sharp 

incised valley in the upland plain) from which flows Creighton Tributary. Bad 

Lake is a representative site within the Palliser Triangle. The basin has a semi-

arid climate with about 300 mm of annual precipitation (Gray and Granger, 

1986). The 15-year (1971-1986) average air temperature and precipitation 
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(rainfall and snowfall) during “winter period” (November 1 to April 30) for 

the basin are -6.3 ºC and 106 mm, respectively (Environment Canada, 2006a). 

Frozen soils and blowing snow develop over the winter, and snowmelt and 

meltwater runoff occur in the early spring. Major snowfall usually starts in 

November and continues until April; several episodes of snowmelt and runoff 

begin in March (Pomeroy et al., 1998). The snowmelt freshet is the main 

streamflow event of the year at Creighton Tributary, where the stream 

discharges in an intermittent manner with the majority of flow during and 

immediately after snowmelt. At Creighton Tributary Basin, the study focuses 

on derivation and testing of a snow hydrology model for relatively well-

drained semi-arid site and also on analyzing drought impact on snow 

hydrology at this site. 

 St. Denis National Wildlife Area (SDNWA). The SDNWA (52°02'N, 

106°06'W, 545-560 m a.s.l., 3.85 km2) is located in south-central 

Saskatchewan, Canada (Figure 3.1), and in a moderately rolling landscape 

with slope ranging from 10 to 15% (van der Kamp et al., 2003). The area is 

dominated by small depressions with poorly-developed drainage, clay soils 

and glacial till substrate (Hayashi et al., 1998). The SDNWA has three major 

land uses: native grassland, brome grassland, and cultivated land. Saskatoon 

Airport, located about 40 km west of the SDNWA, has a 2°C annual air 

temperature, with -19°C as the January mean temperature and 18°C as the 

July mean temperature; the 30-year (1967-1996) mean annual precipitation in 

Saskatoon is 358 mm with 74 mm of snowfall occurring from November to 

 35



April (van der Kamp et al., 2003). Snowfall generally starts in November, and 

several snowmelt runoff events occur in early spring between March and 

April in the area (van der Kamp et al., 2003). At the SDNWA, this study 

focuses on the modelling scale derivation and comparison for snow 

accumulation and snowmelt. 

 Basin of Wetland 109 at the SDNWA. Over 100 “pothole” depressions 

in which wetlands develop exist at the SDNWA, and one of them is Wetland 

109 (Figure 3.1). It is a small closed depression and typifies other depressions 

in the area. The effective area of basin is 0.02013 km2 with 0.00412 km2 

comprising the wetland (Hayashi and van der Kamp, 2000; Hayashi et al., 

2003); the effective drainage area is a portion of the drainage basin which are 

expected to contribute runoff. Four smaller depressions exist in the vicinity of 

the effective area of basin and altogether form the gross drainage of Wetland 

109 (Hayashi and van der Kamp, 2000; Hayashi et al., 2003). In dry years, 

only the meltwater in the effective area of the basin contributes to water level 

change in Wetland 109 during early spring period; whereas overflows from 

other adjacent small depressions can lead to water level rise in Wetland 109 in 

some wet years (van der Kamp, 2006). At the basin of Wetland 109, the study 

focuses on derivation and testing of a snow hydrology model for a relatively 

poor-drained wetland on Canadian Prairies and also on examining drought 

impact on snow hydrology at this site. 
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Figure 3.1 Study sites: (a) Bad Lake IHD Research Basin and St. Denis NWA, 
(b) Creighton Tributary of Bad Lake Research Basin, (c) LiDAR DEM of St. 
Denis NWA (dark solid line indicates SDNWA boundary), (d) contour map of 
effective area of Wetland 109 (dark solid line denotes cacthment and shaded 
area indicates Wetland 109).  
 
 

3.2 Field Observations 

At Bad Lake, field observations were carried out from the 1960s to the 

1980s, including measurements from a Meteorological Service of Canada 
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standard meteorological station with an on-site observer, streamflow gauges 

and extensive snow surveys. Specialised measurements of air temperature, 

relative humidity, wind speed, soil temperature, precipitation, snow depth, and 

radiation (direct shortwave, diffuse, and net) were obtained from the 

meteorological station and other sites. Snow surveys were conducted in 

various land uses within the basin and provided measurements of snow depth 

and density during the winter period and melt rate during the snowmelt period. 

Streamflow discharge on Creighton Tributary was monitored with a stage 

recorder at a weir and there were frequent velocity measurements so that 

reliable stage-discharge relationships could be developed for the melt period. 

 At St. Denis, field observations were made in the 1990s and the 2000s 

(Figure 3.2). Measurements of air temperature, relative humidity, two-metre 

wind speed, and precipitation during 2005 and 2006 were collected from a 

precipitation gauge station. At the same time measurements of radiation (net 

short-wave, net long-wave, and net all) and vapour pressure were obtained 

from a station with eddy correlation system operated by Dr. Bing Cheng Si, 

Department of Soil Science, University of Saskatchewan. Measurements of air 

temperature, relative humidity, ten-metre wind speed, radiation, and vapour 

pressure from 1999 to 2006 were gathered from a ten-metre tower station 

operated by Environment Canada. Precipitation data from 1999 to 2005 was 

acquired from a nearby Meteorological Service of Canada station at Humboldt 

to replace precipitation collected from the ten-metre station at St. Denis.  
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Figure 3.2 Plan of field observations at St. Denis NWA on a LiDAR DEM. 
Lines indicate field observation transects of soil properties, vegetation cover, 
and snow accumulation. Points indicate meteorological stations. 
  
 

At St. Denis, field surveys of soil properties (0-40 cm volumetric soil 

moisture and soil porosity), vegetation cover information (stalk height, stalk 

density, stalk diameter, and cover type), snow accumulation information 

(depth and density), and pond water level were also conducted. Soil properties 

and vegetation cover information were surveyed along the field transects in 

October, 2005 (Figure 3.2); along the same transects snow survey was 

conducted from January-April, 2006. A brief description of these transects is 

shown in Table 3.1 and their photos during the field season are illustrated in 

Appendix A. The mean values of volumetric soil moisture, vegetation height, 

snow accumulation (SWE), and snow density on these transects are shown in 

Appendix  B. In  October, 1999  and  November, 2000,  soil  properties  and   
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Table 3.1 St. Denis field observation transect description. 

Transect 
# 

Length 
(m) 

Sampling 
points 

Sampling 
interval (m) 

Description 

1 220 45 5 rolling stubble field 

2 170 35 5 relatively flat stubble field 
crossing a small wetland 

3 120 25 5 relatively flat grassland area 

4 160 33 5 rolling field with transition 
between grassland and 

stubble field 
 

vegetation cover information were surveyed by Environment Canada on 

various land covers (cultivated land, grassland, and wetland). In October 2003 

and October 2004, these surveys were carried out by Department of Soil 

Science, University of Saskatchewan (Pennock, 2004; Pennock et al., 2005). 

From 2000 to 2006 pre-melt snow accumulation information (usually in 

March) on various land covers and spring wetland water level (in April and 

early May) were surveyed by Environment Canada (van der Kamp et al., 

2006a; 2006b). The methods used for the data collection at both Bad Lake and 

St. Denis are described in Appendix C. 

 At St. Denis, grids of LiDAR DEM and vegetation height that are used 

by the Distributed Blowing Snow Model (DBSM) were also collected. The 

LiDAR campaign was carried out by Applied Geomatics Research Group 

(AGRG) of Nova Scotia Community College and C-Clear program on August 

9th, 2005. AGRG applied the Applanix proprietary ‘PosPac’ software 

environment to integrate and process GPS trajectory and inertial measurement 
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unit (Töyrä, 2005). Optech’s proprietary ‘REALM’ software was used to 

process all data and ‘flat terrain’ and ‘dense vegetation’ options were applied 

to separate ground and non-ground features (Töyrä, 2005). The ground truth, 

conducted by Environment Canada, revealed that vegetation filtering 

processed by AGRG only removed the shrubs. Further filtering was conducted 

by Environment Canada and LiDAR explorer for ArcGIS was used to separate 

bard ground layer and vegetation layer based on a 3×3 kernel size and 0.2 m Z 

tolerance. This resulted in nine LiDAR tiles covering St. Denis NWA and 

surrounding area. All data in the nine LiDAR tiles was interpolated into a 

DEM by Dean Shaw using Inverse Distance Weighted (IDW) algorithm in 

ESRI ArcGIS. This results in the total number of 6201×6201 grids with grid 

size of 0.5 m×0.5 m for the DEM. For the modelling in DBSM, the Fast 

Fourier Transform routine (FFTs) in the windflow model requires any power 

of two numbers of grids in each direction of the DEM. Thus, a grid resample 

routine was conducted in ArcView GIS, resulting in 512×512 grids with a grid 

size of 6 m×6 m. This is the DEM grid used in the DBSM modelling. 

 Aerial photos and site plan along with vegetation height were used to 

make the vegetation height grid. A detailed vegetation survey was conducted 

at St. Denis NWA on October 24-26, 2005. Vegetation height was measured 

by ruler. Eight groups of vegetation was classified based on the height and 

type: fallow, short stubble, tall stubble, short grass, tall grass, shrubs, short 

trees, and tall trees along with non-vegetative features (roads and water bodies 

treated as zero height). Based on the aerial photos and site plan for St. Denis 
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NWA collected and compiled by Robert Armstrong and Environment Canada, 

vegetation height polygons were created and delineated in ArcView GIS, 

resulting in an ArcView GIS shape file containing vegetation height. This 

shape file was converted into a grid file comprising 512×512 grids with a grid 

size of 6 m×6 m. This is the vegetation height grid used in the DBSM 

modelling. 
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Chapter 4 

4.0 Model Scale Derivation for Snow Accumulation and Snowmelt  

4.1 Methods 

Spatially distributed and spatially aggregated approaches were used to 

estimate snow accumulation (SWE) and snowmelt. Both approaches use 

models with similar physics, but differ in the spatial scale at which 

calculations were carried out. Calculations in the spatially distributed 

approach were conducted on small-sized Hydrological Response Units (HRU), 

whereas calculations in the spatially aggregated approach were based on 

large-sized HRU. A HRU is a spatial landscape unit assumed to have a 

uniform hydrological response, such that it can be described by a unique set of 

parameters, variables and fluxes (Pomeroy et al., 2007b).  

 

4.1.1 Model Scale for Snow Accumulation 

Spatially Distributed Approach. A portable version of the Distributed 

Blowing Snow Model (DBSM) developed by Essery (2006), which is a 

distributed parametric version of Prairie Blowing Snow Model (PBSM), was 

used in this approach. The calculation in the portable DBSM is based on gird 
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cells, on which the flux of snow mass is adjusted after estimation of transport 

and sublimation fluxes by according to Equation [2.1] (Figure 4.1).  

Three inputs to this portable version of DBSM are a LiDAR DEM grid 

file, a grid file of vegetation height and a time-series meteorology file. The 

DEM grid file contains 262,144 grids of elevation with 6 m resolution over a 

3100.5 × 3100.5 m area surrounding St. Denis NWA (Figure 4.2). The 6-m 

grids are considered as HRU based in the spatially distributed approach, and 

this type of HRU is the smallest possible based on location. The grid file of 

vegetation height stores the vegetation height on the grids with the same 

resolution and areal extent as DEM grids (Figure 4.2). The meteorology file 

contains hourly air temperature, relative humidity, wind speed, wind direction, 

and precipitation rate during the period of October 31, 2005 - April 30, 2006 

(Figure 4.3). The final outputs are the areal distribution of SWE on the 6-m 

grids and are generated for the simulation period specified by users. 

 

Figure 4.1 Schematics of the snow mass calculation in the spatially distributed 
approach. Arrows indicate fluxes of snow mass and calculations for these 
fluxes are based on Equation [2.1]. 
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Figure 4.2 DBSM inputs for St. Denis: (a) Elevation grids, (b) Vegetation 
height grids. 
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Figure 4.3 Hourly observations of temperature, humidity, wind speed, and 
precipitation during period of October 31, 2005 - April 30, 2006.  
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Spatially Aggregated Approach. The Prairie Blowing Snow Model 

(PBSM) of Pomeroy and Li (2000) was coupled with a windflow model in the 

Cold Regions Hydrological Model platform (CRHM) to estimate the 

redistribution of snow by wind. The windflow model is a simple parametric 

version of Mason and Sykes windflow model (Walmsley et al., 1989). The 

simplified windflow model considers the effect of small scale topographical 

variations on wind speed and adjusts the wind speed accordingly, such that 

wind speeds over hilltops differ from those over depressions or flat terrain. A 

C++ programming code for this simplified windflow model is shown in 

Appendix D. 

The adjusted wind speeds from the windflow model are used in PBSM. 

PBSM (Pomeroy and Li, 2000) uses physically-based algorithms to estimate 

snow accumulation based on a mass balance of snowfall and fluxes of 

saltation, suspension and sublimation of blowing snow. Coupling the 

simplified windflow model of Walmsley et al. with PBSM provides an 

estimation of snow accumulation due to changing local topography and 

surface roughness. The calculation is based on HRUs, in such a way that more 

snow accumulates in areas with rougher surfaces (‘sink area’) compared to 

those with less roughness (‘source area’) (Figure 4.4). 

Initially, 19 HRUs were established for running the spatially 

aggregated approach; they were chosen based on criteria such as aspect class, 

slope class, and vegetation class. These criteria are similar to those in the 

Steppuhn’s stratification system discussed by Pomeroy and Gray (1995) and  
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Figure 4.4 Schematics of snow mass calculation in the spatially aggregated 
approach. 
 
 
Shook (1995); these criteria were used to divide the basin into several HRUs, 

on which snowcovers have independent frequency distributions of depth and 

water equivalent. These 19 HRUs are shown in Table 4.1; the parameters for 

selection were aspect, slope, elevation and aerodynamic roughness. Detailed 

characteristics of these parameters are shown in Appendix E. Aerial 

photographs and site maps were used to determine the blowing snow fetch  

 

Table 4.1 Initial HRU for the spatially aggregated approach. 

HRU Name Symbols HRU Name Symbols
Stubble South Steep Slope SSSS Grass South Gentle Slope GSGS 
Stubble South Gentle Slope SSGS Grass North Steep Slope GNSS 
Stubble North Steep Slope SNSS Grass North Gentle Slope GNGS
Stubble North Gentle Slope SNGS Grass Level GL 
Stubble Level SL Grass Steep Slope Hilltop GSSH 
Stubble Steep Slope Hilltop SSSH Grass Gentle Slope Hilltop GGSH
Stubble Gentle Slope Hilltop SGSH Grass Steep Slope Valley GSSV 
Stubble Steep Slope Valley SSSV Grass Gentle Slope Valley GGSV
Stubble Gentle Slope Valley SGSV Wetland W 
Grass South Steep Slope GSSS   
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distance shown in Appendix E;  fetch distance was assumed to equal 300 m, 

due to the rolling terrain characteristics of field site. Preliminary runs based on 

these 19 HRUs were conducted to calculate snow accumulation development 

during pre-melt period (Oct 31, 2005 – Mar 27, 2006) (Figure 4.5). Figure 4.5 

shows that some HRUs have very similar response. Based on this result, the 

original 19 HRUs were aggregated to seven HRU (Figure 4.6). These seven 

HRUs shown in Table 4.2 represent the major landscape units in St. Denis 

regarding the redistribution of snow by wind and the minimum complexity 

required to calculate snow accumulation. The map of the seven HRUs is 

illustrated in Figure 4.7. Areas of each HRU were determined by ground 

survey. Vegetation height was decided based on field surveys of vegetation; 

fetch distance was assumed to equal 300 m, due to the rolling terrain 

characteristics of field site. 

 

Figure 4.5 Simulated pre-melt snow accumulation for 19 HRUs at St. Denis. 
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Figure 4.6 Grouping of 19 HRUs to 7 HRUs in the spatially aggregated 
approach. 
 

Table 4.2 Characteristics of parameters for HRU in the spatially aggregated 
approach. 
 

HRU Name 
Area 
(km2) 

Vegetation Height 
(m) 

Blowing Snow Fetch Distance 
(m) 

Stubble Hilltop 0.5 0.05 300 
Stubble Slope 0.4 0.12 300 
Stubble Level 1 0.15 300 
Stubble Valley 0.5 0.2 300 
Grass Level 1 0.5 300 
Grass Valley 0.3 0.5 300 
Wetland 0.15 5 300 
 

4.1.2 Model Scale for Snowmelt 

 The Energy-Budget Snowmelt Model (EBSM) developed by Gray and 

Landine (1988) was used to estimate snowmelt for both the spatially 

distributed and spatially aggregated approaches. The snow accumulation and 

snowmelt routines were linked and the outputs of daily melt were calculated. 
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Figure 4.7 Map of seven HRUs at St. Denis NWA. 

 

A snowmelt sensitivity analysis to slope and aspect was conducted 

during the melt period at St. Denis NWA. The purpose was to determine 

whether daily snowmelt is sensitive to changing slope or aspect in order to 

decide whether further disaggregation of HRUs was necessary for melt 

calculations. Both observed and simulated daily snowmelt rates were 

compared for the steepest south-facing (6.09°) and north-facing slopes (4.29°) 

at St. Denis (Figure 4.8). The averaged differences of daily snowmelt rate 

between the steepest south-facing and north-facing slopes were 9.3% and 

5.8% for observation and simulation, respectively. This corresponds to mean 

differences of 0.68 mm/day and 0.58 mm/day for observed and simulated 

daily snowmelt, respectively. Such small differences indicate that the slope 

and aspect have only small effects on daily snowmelt at St. Denis. Hence, the  
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Figure 4.8 Daily snowmelt comparisons. (a) Observed daily snowmelt.  
(b) Simulated daily snowmelt. 
 

criterion for determining HRU for snowmelt was not related to slope and 

aspect but to pre-melt snow accumulation. 

In the spatially distributed approach for melting, HRU were 

determined initially according to the pre-melt SWE estimated from the 

spatially distributed snow accumulation. The maximum pre-melt SWE on 

March 27, 2006 over the area shown in Figure 4.2 was reclassified in 

ArcView GIS into 64 HRUs with unique values of pre-melt SWE. In the 

spatially aggregated approach, HRUs were the same seven HRUs as described 

in Table 4.2. A flowchart of routines for estimating snow accumulation and 

snowmelt for both the spatially distributed and spatially aggregated 

approaches is shown in Figure 4.9. 

 

4.1.3 Model Scale Comparison 

 To compare the model scale, observed pre-melt SWE and daily melt  
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Figure 4.9 A flowchart of routines for estimating snow accumulation and 
snowmelt. 
 

from the four field transects were averaged to get values of observed SWE 

and daily melt on the seven HRUs as described in Table 4.2. Without 

calibration of model parameters, average values of simulated pre-melt SWE 

and daily snowmelt on these seven HRUs from both approaches were 
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compared with the averaged observed values on the corresponding HRUs 

during the period of January – April, 2006. 

To evaluate the performance of different modelling approaches, three 

statistical measures, Root Mean Square Difference (RMSD), Nash-Sutcliffe 

coefficient (NS) (Nash and Sutcliffe, 1970) and Model Bias (MB) were 

calculated as, 

21 ( s oRMSD X X
n

= −∑ )                                      [4.1] 
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where n is number of samples, Xo, Xs, and oX  are the observed, simulated, 

and mean of the observed values, respectively. The Root Mean Square 

Difference is a weighted measure of the difference between observed and 

predicted values and has the same units as the observed and predicted values. 

A Nash-Sutcliffe coefficient measures the model efficiency with a value equal 

to 1 implying that model perfectly predicts pre-melt snow accumulation and 

daily melt with respect to observations. A value equal to 0 indicates that 

estimated values are not different from those observed. Hence, any positive 

value of this coefficient shows that the model has some predictive power, and 

better model performance is associated with higher values (Evans et al., 2003). 
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The value of Model Bias evaluates the bias of the model, a positive bias 

indicates overprediction and a negative bias indicates underprediction. 

 In addition, the areal mean values of total snow accumulation on 

March 27 2006, daily snowmelt, snowmelt duration, and snow-covered area 

during melt period for St. Denis NWA were compared between the two 

approaches. In the spatially distributed approach, the areal mean values of 

these variables were determined by averaging values from 104,182 grids. The 

areal mean values in the spatially aggregated approach were decided based on 

the area-weighted values from the seven HRUs as, 

7
( )

( )
1=

= ∑ HRU i
Areal HRU i

i Total

Area
Value Value

Area
                                   [4.4] 

where AreaHRU(i), AreaTotal, ArealValue , and ValueHRU(i) are the area of HRU(i), 

total area of basin, areal mean value and value of HRU(i), respectively.  

 

4.2 Results 

4.2.1 Model Scale Comparison for Snow Accumulation 

4.2.1.1 Pre-melt Snow Accumulation 

 The routines for estimating pre-melt SWE from both spatially 

distributed and spatially aggregated approaches were run for the 147-day 

period of October 31, 2005 – March 27, 2006. Cumulative snowfall was 

approximately 97 mm during this period. The areal distribution of snow 

accumulation for nine dates before melt was simulated from the spatially 

distributed approach (Figure 4.10). Figure 4.10 shows how snow 
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accumulation changed from Feb. 08, 2006 to Mar. 15, 2006; the areal snow 

accumulation evolved rapidly after the three major snowfalls (24 mm on Feb. 

28 and Mar. 01, 15 mm on Mar. 04, and 8 mm on Mar. 11). Figure 4.10 also 

illustrates that deeper snow accumulation tends to occur in ditches of grid road 

and areas with taller vegetation. 

 

 

Figure 4.10 Simulated evolution of pre-melt snow accumulation from the 
spatially distributed approach. 
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Figure 4.10 Concluded. 
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Simulated pre-melt snow accumulation on the seven HRUs is shown in 

Figure 4.11; it demonstrates that taller vegetation (e.g. grassland and wetland) 

had greater snow accumulation than did shorter vegetation (e.g. stubble fields). 

Also, more snow accumulated in valleys than on hilltops and slopes, because 

hilltops and slopes have higher wind exposure, resulting in snow being drifted 

from these areas to valleys. At end of the pre-melt period, about 148 mm and 

237 mm of SWE were on ‘grass valley’ and ‘wetland’ areas, which was about 

4 and 6 times that snow accumulation to the ‘stubble hilltop’ (i.e. 40 mm 

SWE), respectively. The ‘stubble valley’ area cumulated about 99 mm SWE, 

more than 2 times of that of the ‘stubble hilltop’. 

 

 

Figure 4.11 Simulated pre-melt snow accumulation evolution from the 
spatially aggregated approach. 
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4.2.1.2 Model Scale Comparison 

 Field transect of observations of snow depth and density were assigned 

to the seven HRUs and were compared to the simulated snow accumulation 

for pre-melt period of January - March 2006 from both the spatially 

distributed and spatially aggregated approaches (Figure 4.12 and Figure 4.13). 

They demonstrate that both approaches simulate snow accumulation fairly 

close to the observed ones at this scale. On the ‘stubble hilltop’, the spatially 

aggregated approach tends to simulate snowcover development well, while the 

spatially distributed approach tends to overestimate snow. On the ‘wetland’, 

the spatially distributed approach tends to have the best performance in 

predicting snow accumulation. 

 To quantify the difference and performance of the two model 

approaches in predicting snow accumulation, the Root Mean Square 

Difference (RMSD) and Nash-Sutcliffe coefficient (NS) were calculated for 

the seven HRUs (Figure 4.12), and Model Bias (MB) was also computed for 

the seven HRUs (Figure 4.13). Both approaches have quite similar RMSD and 

NS for five HRUs (‘stubble slope’, ‘stubble level’, ‘stubble valley’, ‘grass 

level’ and ‘grass valley’), with RMSD ranging from 2.06 mm to 5.91 mm and 

NS ranging from 0.68 to 0.91. This indicates that both approaches simulate 

the development and timing of snowcovers in winter period fairly well with 

relatively small differences with observations. For the ‘stubble hilltop’, a 

negative value of NS for the spatially distributed approach and a positive 

value of NS for the spatially aggregated approach implies that the spatially 
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Figure 4.12 Model scale comparison for snow accumulation. (a) Stubble 
hilltop (b) Stubble slope (c) Stubble level (d) Stubble valley (e) Grass level  
(f) Grass valley (g) Wetland. 
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Figure 4.12 Continued. 
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Figure 4.12 Continued. 
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Figure 4.12 Concluded. 

 

Figure 4.13 Model scale comparison for cumulative pre-melt SWE. 
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aggregated approach performs much better in predicting snowcover evolution 

here. For the ‘wetland’, values of NS are 0.84 and 0.22 for the spatially 

distributed and spatially aggregated approaches, respectively, indicating that 

the spatially distributed approach has better prediction power in the timing of 

SWE. The total end of winter snow accumulation on Mar. 27, 2006 is shown 

in Figure 4.13. Both approaches generate the end of winter snow mass 

moderately close to the observations on most HRUs; that is, the amount of 

overestimation or underestimation for total snow accumulation is within 30%. 

However, for the ‘stubble hilltop’ and ‘stubble slope’, the spatially distributed 

approach overestimates by more than 30%, while spatially aggregated 

approach underestimates by more than 30%. Topography adds some 

uncertainty to the modelling of blowing snow. 

 

4.2.1.3 Areal Mean Snow Accumulation Comparison 

 In the spatially distributed approach, an average end of winter snow 

accumulation of 111 mm was calculated from 104,182 grid cells (Figure 4.14). 

This averaged value is more than the total winter snowfall of 97 mm; part of 

this difference is the blowing snow import from the outside of basin, which 

was about 6 mm estimated by the spatially distributed approach. In the 

spatially aggregated approach, an areal mean end of winter snow 

accumulation of 90 mm was computed according to Equation [4.4] from the 

seven HRUs. Compared to the spatially distributed approach, the spatially 

aggregated approach estimated 21 mm less SWE for the entire St. Denis 
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NWA. The areal mean observed snow accumulation can be roughly estimated 

based on area-weighted observations for the seven HRU and was 

approximately 97 mm. This implies that both approaches have similar 

accuracy in estimating areal snow accumulation with about 10% of 

overestimation or underestimation. 

 

 

Figure 4.14 Simulated end of winter snow accumulation at St. Denis NWA. 

 

4.2.2 Model Scale Comparison for Snowmelt 

4.2.2.1 Model Scale Comparison 

Snow survey observations were assigned to the seven HRU and were 

compared to the simulated daily snowmelt for melting period of March - April 

2006 from both the spatially distributed and spatially aggregated approaches 

(Figure 4.15). Any negative change in snow accumulation during ablation was  
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Figure 4.15 Model scale comparison for snowmelt. (a) Stubble hilltop (b) 
Stubble slope (c) Stubble level (d) Stubble valley (e) Grass level (f) Grass 
valley (g) Wetland.  
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Figure 4.15 Continued. 
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Figure 4.15 Continued. 
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Figure 4.15 Concluded. 
 

considered to be due to snowmelt. The observations show that both modelling 

approaches have some predictive power for snowmelt. The Root Mean Square 

Difference (RMSD) and Nash-Sutcliffe coefficient (NS) were calculated for 

the seven HRUs to evaluate the difference between the two modelling 

approaches in predicting snowmelt (Figure 4.15). Both approaches have 

RMSD within the range of 0.78 – 2.7 mm/day for the seven HRUs. This 

implies relatively small differences between the simulated and observed daily 

snowmelts. Values of NS vary with HRUs; that is, both approaches have 

negative values for the ‘stubble hilltop’, ‘stubble level’, indicating that both 

modelling approaches simulate the timing of daily snowmelt poorly at these 
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sites. However, both approaches predict well for the ‘stubble valley’ with NS 

of 0.51 and 0.47 for the spatially distributed and spatially aggregated 

approaches, respectively. The spatially distributed approach has higher values 

of NS than those of spatially aggregated approach for the ‘stubble slope’, 

‘grass level’, ‘grass valley’ and ‘wetland’. This suggests that the spatially 

distributed approach performs better in estimating the timing of snowmelt. 

 

4.2.2.2 Areal Mean Daily Snowmelt, Snowmelt Duration, and Relative  
            Snow-covered Area Comparison 
 
 Based on Equation [4.4], the areal mean daily snowmelt and relatively 

snow-covered area for St. Denis NWA were estimated from 64 HRUs in the 

spatially distributed approach and from the seven HRUs in the spatially 

aggregated approach (Figure 4.16). Figure 4.16 shows that major melt 

commenced on March 28, 2006; snowmelt ended on April 20 in the spatially 

aggregated approach, which was eight days earlier than that in spatially 

distributed approach. Total snowmelt of 88 mm and 109 mm was calculated 

for the spatially aggregated and spatially distributed approaches; this is about 

the same as the pre-melt snow accumulation. 

Figure 4.16(a) illustrates that the majority of melt occurred during 

March 28 - April 14; the areal mean daily melt peaked on March 29 (about 11 

mm/day) and on April 08 (about 12.5 mm/day) for the spatially aggregated 

and spatially distributed approaches, respectively. Both approaches estimated 

very similar daily snowmelt during March 28 - April 03. With more pre-melt  
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Figure 4.16 Areal snowmelt comparisons. (a) Areal mean daily snowmelt  
(b) Relative snow-covered area. 
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snow accumulation calculated in the spatially distributed approach, much 

higher daily melt from the spatially distributed approach during April 04 - 

April 11 indicates that the melt rate is closely associated with the amount of 

pre-melt snow accumulation. Figure 4.16(b) shows an interesting aspect of 

model scale on the areal snowcover depletion. Compared to the spatially 

aggregated approach, the snow-covered area depleted rather gradually in the 

spatially distributed approach. This is attributed to larger numbers of HRU in 

the spatially distributed approach so that snowcover depletion of individual 

HRU did not cause sudden reduction of snow-cover area for entire basin. The 

relative snow-cover area from the spatially distributed approach shown in 

Figure 4.16(b) is closer to snow cover depletion curves in the Prairies from 

aerial photographs measurement by Pomeroy et al. (1998). 

 

4.3 Model Scale Selection 

For the predictability of snowcover development during the winter 

accumulation period, Figure 4.12(a)-(g) shows that both the spatially 

distributed and spatially aggregated approaches have similar performance on 

most HRUs. The spatially distributed approach predicted the development of 

snow accumulation better on some HRU (e.g. ‘wetland’), while the spatially 

aggregated approach had better performance on other HRU (e.g. ‘stubble 

hilltop’). However, the end of winter snow accumulation is the most important 

snow variable in the water balance. Figure 4.13 shows that both scales 

provided similar predictability of the end of winter snow accumulation when 
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compared to the observations of cumulative winter snow accumulation. This 

is also confirmed in the areal mean snow accumulation comparison, indicating 

that both approaches had similar accuracy. However, the computational time 

for the spatially distributed approach was about 30-50 minutes, while the 

spatially aggregated approach took about 1 minute. For the purpose of 

estimating the timing of pre-melt snow accumulation and total snow 

accumulation in a small-sized Canadian prairie basin, the spatially aggregated 

approach was sufficiently accurate and is computationally efficient. However, 

the spatially distributed approach provides much more detailed information on 

the location of deep snow drifts and scour zones. 

 With respect to the sequence of daily snowmelt, Figure 4.15(a)-(g) 

demonstrates that both approaches have some prediction power and that their 

simulated results are analogous. Compared to the spatially aggregated 

approach, the spatially distributed approach performed better in reproducing 

the timing of daily snowmelt for some HRUs (e.g. ‘stubble slope’, ‘grass 

level’, ‘grass valley’ and ‘wetland’). There were differences between two 

approaches in the timing of areal snowmelt, snow-covered area, and duration 

of areal snowcovers (Figure 4.16). However, the spatially aggregated 

approach takes only the half computational time of the spatially distributed 

approach, hence it is more efficient to use the spatially aggregated approach 

for the estimation of snowmelt for a small-sized Canadian prairie basin. 
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Chapter 5 

5.0 Snow Hydrology Model Derivation and Test for Canadian Prairies 

 A snow hydrology model for Canadian Prairies was run at two 

drainage basins: Creighton Tributary of Bad Lake, Saskatchewan and Wetland 

109 at St. Denis NWA, Saskatchewan. The former basin is semi-arid and has 

relatively well-developed drainage, while the latter one is sub-humid, partly 

wooded and relatively poorly-drained site with many small depressions like 

Wetland 109. The basins represent the range of conditions in the Canadian 

Prairies. 

 

5.1 Model Derivation and Evaluation at Bad Lake, Saskatchewan 

5.1.1 Methods 

5.1.1.1 Model Derivation    

  The Cold Regions Hydrological Modelling platform (CRHM) was 

used to estimate the water balance during winter and spring for Creighton 

Tributary of Bad Lake. CRHM is based on a modular, object-oriented 

structure in which component modules represent basin descriptions, 

observations, or physically-based algorithms for calculating hydrological 

processes. Full details of CRHM are described by Pomeroy et al. (2007b). 
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Relevant modules for simulation of surface snowmelt runoff include the 

Prairie Blowing Snow Model (Pomeroy, 1989; Pomeroy et al., 1993; Pomeroy 

and Li, 2000), the Energy-Budget Snowmelt Model (Gray and Landine, 1988), 

Gray’s expression for snowmelt infiltration (Gray et al., 1985), Granger-Gray 

evaporation expression for estimating actual evaporation from unsaturated 

surfaces (Granger and Gray, 1989; Granger and Pomeroy, 1997), a soil 

moisture balance model for calculating soil moisture balance and drainage 

(Leavesley et al., 1983), and Clark’s lag and route runoff timing estimation 

procedure (Clark, 1945). These modules were assembled along with modules 

for radiation estimation and albedo changes (Garnier and Ohmura, 1970; Gray 

and Landine, 1987; Granger and Gray, 1990) into CRHM “projects” which 

are basin-specific models. Detailed schematics of these modules for the snow 

hydrology model are shown in Appendix F. 

  Assembling these modules in CRHM enabled the estimation of snow 

accumulation (SWE) after wind redistribution, snowmelt rate, cumulative 

snowmelt, cumulative snowmelt infiltration into unsaturated frozen soils 

(INF), and actual evaporation (Evap).  Evaporation is calculated using the 

method of Granger and Pomeroy (1997), which is entirely an atmospheric 

energy balance and feedback approach. The approach is then modified by 

CRHM in that actual evaporation (Evap) is limited by a surface mass balance; 

when interception storage and soil moisture reserves are depleted evaporation 

cannot proceed.  Snowmelt runoff over the event (R) was estimated based on a 

simplified conservation equation:  
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where Rbasin, Rfallow, Rstubble, and Rgrassland are basin snowmelt runoff, snowmelt 

runoff over fallow field, stubble field, and grassland, respectively; all runoff 

are in mm of water equivalent; Areabasin, Areafallow, Areastubble, and Areagrassland 

are area of basin, fallow field, stubble field, and grassland, respectively.  The 

definition of these HRUs within a basin permits consideration of effects due to 

variable contributing area – HRUs are only part of the contributing area for 

streamflow when they produce surface runoff. 

 

  The simulated snow accumulation was compared to field observations 

of snow depth and density in Bad Lake Research Basin taken during period of 

January - April 1982. With no calibration of parameters from streamflow 

observations, the simulated total streamflow discharge during snowmelt 

period was tested against cumulative streamflow discharge in the snowmelt  

5.1.1.2 Model Evaluation 

 

        

  Calculations in CRHM are made on Hydrological Response Units 

(HRUs). Based on the major land uses in the basin and on physiography, three 

HRUs (fallow field, stubble field, and grassland [coulee]) were chosen for the 

snowmelt runoff simulation (Table 5.1). The total snowmelt runoff from these 

HRUs provided the cumulative basin snowmelt runoff as, 

where all terms are in mm of water equivalent. 

    R = SWE – INF – Evap                          [5.1] 

fallow grasslandstubble
basin fallow stubble grassland

basin basin basin

Area AreaAreaR R R R
Area Area Area

= + +
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        [5.2] 



Table 5.1 Characteristics of major module parameters at Creighton Tributary. These parameters are used for three HRUs (fallow 
field, stubble field, and grassland coulee) to test model in both 1974-75 and 1981-82. 
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HRU Name 
 

Area 
(km2) 

Soil Type 
 

Fall Soil Moisture  
(m3 water/m3 soil) 

Porosity 
(ratio) 

Vegetation 
Height (m)

Blowing Snow 
Fetch Distance 

(m) 
Routing Lag 

(hour) 

 
Routing 

Storage (day)

Fallow Field 3.58 Clay Loam 0.23 0.5 0.05 1500 8 
 
1 

Stubble Field 6.13 Clay Loam 0.27 0.5 0.2 2000 8 
 
1 
 

0.5 Grassland 1.68 Clay Loam 0.22 0.5 0.25 2000 3 
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period in the spring of 1975. For the snow accumulation simulations (1981-82) 

only fetch length and vegetation height were important to the simulation and 

these were recorded from field observations made at the time.  For the basin 

discharge simulation (1974-75), parameters observed and reported by Gray et 

al. (1985) or noted in field observations at the time were used and are listed in 

Table 5.1. Porosity was determined from soil type and values recommended 

by Dingman (1994). Blowing snow fetch distance was decided from maps and 

contemporary aerial photographs of the area. The method to estimate routing 

lag and storage was discussed by the Division of Hydrology (1977) in 

evaluating the U.S. National Water Service River Forecast System and their 

values were chosen based on the HRU size and shape and landform type. The 

fetch length and vegetation heights in 1981-82 were similar to that in 1974-75. 

  Two statistical measures, the Nash-Sutcliffe coefficient (NS) (Nash 

and Sutcliffe, 1970) and Model Bias (MB) were used to evaluate the 

performance of CRHM in simulating snow accumulation over the winter and 

streamflow discharge. NS and MB were calculated as, 
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where Xo, Xs, and oX  are the observed, simulated, and mean of the observed 

values, respectively. 
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5.1.2 Results 

  The values of 28 snow depth and density surveys on fallow and 

stubble fields were compared to simulated snow accumulation from CRHM 

for January - April 1982 (Figure 5.1). They show that the difference in snow 

accumulation between fallow and stubble field was well simulated over the 

accumulation and pre-melt period. Higher accumulation developed on the 

stubble fields due to erosion and redistribution of snow from the fallow fields 

as blowing snow. The correct simulation of both the source (fallow) and sink 

(stubble) areas suggests that both transport and sublimation of blowing snow 

are correctly estimated (Pomeroy et al., 1998). In the spring of 1975 the 

simulated streamflow discharge (all of Creighton Tributary) due to snowmelt 

runoff was earlier than that observed by about 2 days, and somewhat greater 

discharge (53 mm) was predicted by the simulation compared to the 

measurement (45 mm), however the cumulative discharge curves are very 

similar and the timing of rapid discharge was correct (Figure 5.2). 

  To quantify differences between observation and simulation, both 

Nash-Sutcliffe coefficient (NS) and Model Bias (MB) were calculated for 

fallow and stubble snow accumulation, and cumulative streamflow discharge 

during snowmelt (Figure 5.1 and Figure 5.2). The NS for snow accumulation 

of fallow and stubble fields, and cumulative streamflow discharge were 0.60, 

0.75, and 0.90, respectively. This indicates that CRHM performed fairly well 

in predicting the timing of  snow  accumulation  and  very  well  in predicting  
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Figure 5.1 CRHM evaluation of snow accumulation in fallow and stubble 
field at Bad Lake during the winter of 1981-82. 
 
 

 
Figure 5.2 CRHM evaluation of cumulative streamflow discharge for 
Creighton Tributary of Bad Lake, spring 1975. 
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the timing  of streamflow discharge due to snowmelt. Relatively small values 

of MB, 0.18 for both fallow snow accumulation and streamflow discharge, 

and 0.09 for stubble snow accumulation, represent an 18% overestimation of 

fallow snow accumulation and streamflow discharge and 9% overestimation 

of stubble snow accumulation. This implies a reasonable ability of CRHM to 

estimate snow accumulation in windblown prairie fields and streamflow 

discharge due to snowmelt over frozen soils without calibration of parameters. 

No calibration of parameters was attempted from the results of these 

comparisons, but it is presumed that the simulated hydrograph could be made 

to more closely mimic the observed hydrograph shape with calibration of the 

lag and storage parameters of the Clark unit hydrograph module. 

 

5.1.3 Discussion 

  The snowmelt runoff modelling scheme in CRHM used the spatially 

aggregated approach. It carried out the calculations on aggregated landscape 

units, HRUs, by breaking down the basin into several HRUs with different 

properties responding to hydrological processes. The total streamflow 

discharge was an accumulation of the discharge resulting from snowmelt 

runoff on these HRUs. CRHM included all of the primary processes 

responsible for spring runoff generation in a prairie environment and 

assembled the corresponding modules in a system platform. It showed no 
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gross errors in calculating the water balance or interaction between HRU 

when compared to basin observations.  

  At Bad Lake, the hydrological winter seasons (November 1 to April 30) 

of 1974-75 and 1981-82 were both slightly colder and wetter than the 15-year 

(1971-1986) average: -6.3 ºC air temperature and 106 mm precipitation 

(Environment Canada, 2006a). The performance of CRHM when compared to 

diagnostic observations in these non-drought years is encouraging but does 

not guarantee its good performance in modelling the hydrology in drought. 

Any confidence in its performance under drought should be due to the 

physically-based modules. Bad Lake Research Basin was not operated during 

a severe drought and so it was not possible to test CRHM there in drought 

conditions. To address this, the model was set up and tested during drought 

years at another location; this is described in next section. 

 

5.2 Model Derivation and Evaluation at St. Denis, Saskatchewan 

5.2.1 Methods 

5.2.1.1 Model Derivation 

  CRHM was used to estimate the water balance during winter and 

spring period for the basin of Wetland 109, St. Denis NWA as shown in 

Figure 3.1(d). The same set of physically-based modules as for the Creighton 

Tributary was assembled in the CRHM to simulate the surface snowmelt 

runoff. Full schematics of the modules for simulation of snow hydrology are  
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shown in Appendix G. 

  The estimation of snowmelt runoff was based on the Equation [5.1]. 

Two HRUs (cultivated field and wetland) are essential for the estimations 

(Table 5.2). The cultivated field HRU is the contributing area for the surface 

snowmelt runoff and the wetland HRU is where the runoff water accumulates. 

The estimations of redistribution of snow accumulation (SWE) by wind, 

snowmelt rate, cumulative snowmelt, cumulative snowmelt infiltration into 

unsaturated frozen soils, evaporation, and snowmelt runoff for the basin of 

Wetland 109 were based on the area-weighted approach as, 

  cultivated wetland
basin cultivated wetland

basin basin

Area AreaX X X
Area Area

= +                          [5.5] 

where Xbasin, Xcultivated, and Xwetland are the estimated values of these variables 

for the basin, cultivated field, and wetland, respectively; all terms are in mm 

of water equivalent; Areabasin, Areacultivated, and Areawetland are the areas of the 

basin, cultivated field, and wetland, respectively. 

 

5.2.1.2 Model Evaluation 

  The simulated total pre-melt snow accumulation was tested against the 

field observations in the springs of 2000, 2001, 2003 and 2006. The observed 

total snow accumulation was derived from the snow depth and density surveys 

along the two transects (north-south and east-west) across the Wetland 109 

(van der Kamp et al., 2006a). The simulated total snowmelt runoff in the basin 

was tested against the observed water runoff in the springs of 2000 and 2001. 
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The observed snowmelt runoff was estimated based on the values reported by 

Hayashi et al. (2003) and van der Kamp et al. (2003).  

  For the snow accumulation simulations (1999-2000, 2000-01, 2002-03 

and 2005-06), blowing snow fetch length and vegetation height were essential 

to the simulation. The fetch length can expand outside of the basin boundary; 

it was determined by the aerial photographs and maps of the basin and was 

examined in the field observations. The value for the fetch length was 

presumed constant for the same type of land cover over time. The vegetation 

cover and height information during 1999-2003 was reported by van der 

Kamp et al. (2006a), while information for 2005-06 was derived from the 

field survey in the fall of 2005. For the snowmelt runoff simulations (springs 

of 2000 and 2001), parameters observed at the time of field observations are 

listed in Table 5.2. The volumetric fall soil moisture was determined from the 

field observations by Hayashi et al. (2003) and van der Kamp et al. (2003). 

Porosity was estimated from the soil core samples by gravimetric method in 

the fall of 2005 and was assumed to have similar values for the falls of 1999 

and 2000. The values presented in Table 5.2 fall in the porosity range for the 

clay loam soil texture reported by Dingman (1994). The method to estimate 

routing lag and storage was discussed by the Division of Hydrology (1977) 

the values were chosen based on the HRU size and shape and landform type. 

The routing lag and storage used here are not for the purpose of fitting 

hydrographs but rather for estimating the cumulative snowmelt runoff to the 
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Table 5.2 Characteristics of major module parameters for estimating snowmelt runoff at the Wetland 109. These parameters are 
used for two HRUs (cultivated field and wetland) to test model in 1999-2000, 2000-01, 2002-03 and 2005-06. Methods used for 
collecting and determining these parameters are described in Appendix C. 
 

 

 

 

HRU Name Area (km2) Soil Type 
Fall Soil Moisture 
(m3 water/m3 soil)

Porosity 
(ratio) 

Vegetation 
Height (m) 

Blowing Snow 
Fetch Distance 

(m) 

Routing 
Lag 

(hour) 

Routing 
Storage 
(day) 

1999 – 2000   Fall 1999      
Cultivated (stubble) 0.01601 Clay Loam 0.21 0.48 0.3 300 8 1 
Wetland 0.00412 Clay Loam 0.23 0.54 5 300 0 0 
2000 – 2001   Fall 2000      
Cultivated (stubble) 0.01601 Clay Loam 0.19 0.48 0.1 300 8 1 
Wetland 0.00412 Clay Loam 0.22 0.54 5 300 0 0 
2002 – 2003   Fall 2002      
Cultivated (fallow) 0.01601 Clay Loam 0.19 0.48 0.001 300 8 1 
Wetland 0.00412 Clay Loam 0.22 0.54 5 300 0 0 
2005 – 2006   Fall 2005      

1 Cultivated (stubble) 0.01601 Clay Loam 0.27 0.48 0.2 300 8 
Wetland 0.00412 Clay Loam 0.32 0.54 5 300 0 0 
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wetland.   

  The Model Bias (MB) calculated based on Equation [5.4] was used to 

evaluate the performance of CRHM in estimating the total end of winter snow 

accumulation and cumulative snowmelt runoff. 

 

5.2.2 Results 

5.2.2.1 Pre-melt Snow Accumulation Test 

  The values of observed total pre-melt snow accumulation were derived 

from snow depth and density surveys at the Wetland 109 and compared to the 

simulated pre-melt snow accumulation for springs of 2000, 2001, 2003 and 

2006 (Table 5.3). The simulated pre-melt SWE was close to the observation 

on the cultivated fields (source area) and wetland (sink area) for the spring of 

2000. The simulations of both source and sink areas were generally in 

accordance with the observations for the springs of 2001, 2003, and 2006. 

This implies that both transport and sublimation of blowing snow were 

correctly simulated for springs of above years. 

  The cumulative pre-melt SWE for the basin was estimated from the 

cultivated field and wetland according to Equation [5.5] and the statistical 

indicator Model Bias (MB) calculated by Equation [5.4] was also calculated to 

quantify the differences between observation and simulation (Table 5.3). The 

values of MB were 0.04 and 0.06 for the springs of 2000 and 2003, 

respectively, representing an overestimation of 1.2 mm and 3.6 mm pre-melt 



Table 5.3 CRHM evaluation of snow accumulation at St. Denis. Pre-melt snow accumulation test at the Wetland 109 for springs 
of 2000, 2001, 2003 and 2006. 
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 Note: The date in the brackets indicates when the total snowfall, total observed and simulated pre-melt SWE are up to. 

Year Snowfall (mm) Observed Pre-melt SWE (mm) Simulated Pre-melt SWE (mm) Model Bias (MB) 
Basin   Cultivated Wetland Basin Cultivated Wetland Basin Cultivated Wetland

2000 35.2 (Feb 22) 30.9 32.4 30.9 (Feb 26) 32.4 31.2 32.1 (Feb 22) 0.05 -0.04 0.04 
2001 39.8 (Mar 1) 49.1 57.4 49.1 (Mar 2-3) 38.7 46.7 40.3 (Mar 1) -0.21 -0.19 -0.18 
2003 66.8 (Mar 15) 57.1 86.7 63.1 (Mar 14) 57.7 101.9 66.1 (Mar 15) 0.01 0.18 0.06 

-0.12 2006 96.7 (Mar 27) 90.6 155.2 103.8 (Mar 23) 86.6 111.1 91.6 (Mar 27) -0.04 -0.27 
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SWE for 2000 and 2003. This suggests that CRHM performed well in 

predicting the cumulative pre-melt snow accumulation due to wind 

redistribution for these two years. Values of MB, -0.18 and -0.12 for 2001 and 

2006 indicates that an underestimation of 8 mm and 12 mm pre-melt SWE for 

2001 and 2006. This suggests only moderate discrepancies to observations of 

pre-melt SWE for these years, which fall within the accuracy range of snow 

accumulation estimates from the blowing snow models discussed in the 

previous chapter. 

  There were total snow accumulations of 0 mm, 1.4 mm, 9.3 mm and 

5.2 mm transported by blowing snow into the basin of the Wetland 109 in the 

hydrological winter seasons of 1999-2000, 2000-01, 2002-03, and 2005-06, 

respectively (Table 5.4). This indicates that CRHM has capacity of capturing 

the redistribution of snow by wind from outside of the basin boundary and 

confirms that the snow mass balance calculations in CRHM are not confined 

by the basin boundary. 

 

Table 5.4 CRHM blowing snow estimations for the basin gain and loss.   

Year 
Total Basin Loss of 

Blowing Snow (mm)
Total Basin Gain of 

Blowing Snow (mm)
Net Gain of Blowing 

Snow (mm) 
1999-2000 0 0 0 
2000-01 0 1.4 1.4 
2002-03 0 9.3 9.3 
2005-06 0 5.2 5.2 
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5.2.2.2 Snowmelt Runoff Test 

  The cumulative snowmelt runoff to the Wetland 109 was simulated 

and compared the observed total runoff from snowmelt at the end of March in 

2000 and 2001 (Table 5.5). For the simulation of snowmelt runoff at the end 

of March 2000, 14.9 mm of surface runoff was estimated, which is 

comparable with the observed snowmelt runoff. A moderate value of the 

Model Bias (MB), -0.17, represents an underestimation of 3 mm for the 

surface runoff from melting water. 

  Large differences were found between the observed and simulated 

snowmelt runoff at the end of March 2001 (Table 5.5). With similar values of 

fall soil moisture in 1999 and 2000 and similar values of pre-melt SWE in 

2000 and 2001, the amount of snowmelt runoff at the end of March should be 

similar between 2000 and 2001 (Hayashi et al., 2003). This is shown in Table 

5.5; modelled snowmelt runoff is comparable between 2000 and 2001, 14.9 

mm and 18.1 mm, respectively. However, much lower snowmelt runoff was 

observed in 2001. This could be related to formation of macropores or cracks 

in the area, which is attributed to the shrinkage of high clayey content soil 

during a long drying period (Hillel, 2004). Previous studies at St. Denis 

showed that the formation of macropores enhanced the soil infiltrability and 

resulted in drying-out of wetlands (van der Kamp et al., 2003; Bodhinayake 

and Si, 2004). 

  The fall soil moisture in 2000 shown in Table 5.2 only describes the 

water  content  of  soil  and  is  not   pertinent  to   infiltration  in  the  case  of 
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Table 5.5 CRHM evaluation of snowmelt runoff at St. Denis. Cumulative 
snowmelt runoff test at the Wetland 109 at the end of March in 2000 and 2001. 
  

Year 
Observed Snowmelt Runoff 

(mm) 
Simulated Snowmelt Runoff 

(mm) MB 
2000 18.0 14.9 -0.17 
2001 3.0 18.1 4.9 
 
 
  
macropores in which infiltration becomes unlimited (Gray et al., 1985). In 

response, a new snowmelt runoff simulation was set up in CRHM setting 

unlimited infiltration for both the cultivated fields and wetland area (Table 

5.6). Due to the formation of macropores under continuous cropping practices 

following a hot and dry growing season, more meltwater infiltrates into soils 

in the cultivated field, leading to much less surface runoff, approximately 3.6 

mm from the contributing area to the wetland. No surface runoff was 

generated in the wetland where macropore development resulted in unlimited 

soil infiltrability, allowing all melting water to infiltrate into soils (Granger et 

al., 1984; Gray et al., 1985; 1986; 2001). Thus, the simulated snowmelt runoff  

 
 
Table 5.6 CRHM snowmelt runoff simulation corresponding to the formation 
of macropores. 
  

Year 
Fall Soil Moisture 
(Volumetric Ratio) Snowmelt Runoff (mm) MB 

 Cultivated Wetland Observed Simulated  
2000-01 0.19 0.22 3.0 18.1 4.9 
2000-01 * * 3.0 3.6 0.19 
 Note: The italic bold represents the values of parameters and simulation  

for soils with no development of macropores. 
 Note: * indicates the soil with unlimited infiltrability. 
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was about 3.6 mm for the entire basin, and this is very comparable to the 

observation. 

 

5.2.3 Discussion 

  The performance of CRHM in simulating snow accumulation during 

winter accumulation period and snowmelt runoff during melting period when 

compared to observations was very promising during the drought years (1999-

2000 and 2001-02). It also performed well in estimating winter snow 

accumulation during non-drought years (2002-03 and 2005-06). This is likely 

due to the use of physically-based modules that allowed the comprehensive 

estimation of the primary processes for runoff generation in springtime. 

  The same spatially aggregated approach used in estimation of 

snowmelt runoff at Creighton Tributary of Bad Lake was applied in the 

simulation of melt runoff of the basin of Wetland 109, St. Denis. Compared to 

the basin of Creighton Tributary, the basin of Wetland 109 is a typical 

internally-drained prairie depression or pothole, resulting in poorly-drained 

basin. A runoff contributing area HRU (cultivated field) and a runoff 

accumulating area HRU (wetland) were used to estimate basin surface runoff. 

There are other small depressions in the vicinity of the basin; during dry years, 

runoff stays in these depressions without running into the central wetland, thus 

two HRUs (cultivated field and wetland) were sufficient for the simulating 

surface runoff from snowmelt at the Wetland 109. However, during wet years, 

the contributing area may expand and include these nearby small depressions 
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as runoff water exceeds their storage capacity (van der Kamp, 2006). The “fill 

and spill” process is common among these depressions and is critical to the 

delineation of basin drainage at St. Denis NWA, thus further studies are 

needed in order to improve understanding of water level changes in ponds and 

their estimation due to the surface snowmelt runoff, and discharge from pond 

to pond. 

  Throughout the evaluations of snowmelt runoff model at St. Denis, not 

only the variations of meteorological variables during droughts induced the 

change in hydrological processes responsible for the runoff generation, but the 

changing land use also contributed. Hence, further analysis is conducted next 

to address the combined effects of varying meteorology variables and land use 

on the water availability on Canadian Prairies during drought. 
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Chapter 6 

6.0 Snow Hydrology Sensitivity Analysis to Drought on the Canadian       
      Prairies 
 
 Droughts are natural hazards and frequently develop on the Canadian 

Prairies. Over half the years of three decades, 1910-1920, 1930-1939, and 

1980-1989 were in drought (Nkemdirim and Weber, 1999) and the drought of 

1999-2004 was the most recent one developed in parts of the Prairies (Bonsal 

and Wheaton, 2005). Droughts are characterized by lack of precipitation 

resulting in insufficient water supplies from surface and subsurface (Wilhite 

and Buchanan-Smith, 2005). Many Canadian prairie winter hydrological 

processes: blowing snow transport, blowing snow sublimation, snowmelt, 

snowmelt infiltration, and snowmelt runoff are sensitive to meteorological and 

hydrological changes during drought. Over 80% of annual runoff is derived 

from melt of snow on Canadian Prairies (Gray et al., 1989). This surface 

meltwater runoff contributes to the water supplies in the prairie streams and 

wetlands that are vital resources to farmers and wildlife. This chapter 

examines the impacts of drought on these hydrological processes that control 

snowmelt runoff generation in two prairie basins: Creighton Tributary of Bad 

Lake and Wetland 109 at St. Denis NWA. 

 93



6.1 Synthetic Drought Impact at Bad Lake, Saskatchewan 

 The Bad Lake IHD research basin was operated during 1965-1986, but 

never under conditions of a severe drought. Synthetic drought scenarios were 

created to analyze the effects of drought on the snowmelt runoff-related 

processes at the Creighton Tributary of Bad Lake. 

 

6.1.1 Methods 

6.1.1.1 Drought Sensitivity of Winter Hydrology to Individual Parameters 

 A sensitivity analysis to drought was conducted to identify the 

influence of individual components of meteorological, soil and vegetation 

condition changes during drought on snowmelt runoff and its related 

processes. Observations at the Bad Lake IHD meteorological station from the 

hydrological winter (November 1-April 30) of 1974-1975 were used to drive 

the CRHM drought simulation runs (Figure 6.1). The soil and vegetation 

conditions observed at the Bad Lake basin during the same winter were also 

used in the simulation runs (Table 6.1). The hydrological winter of 1974-1975 

was slightly colder and wetter than “average” with a mean temperature and 

total winter precipitation of -7 ºC and 129 mm, respectively. The 15-year 

(1971-1986) average temperature and precipitation (rainfall and snowfall) 

during the hydrological winter for the Bad Lake basin are -6.3 ºC and 106 mm, 

respectively (Environment Canada, 2006a). Thus, the winter of 1974-1975 

was regarded as ‘near-normal’ in the synthetic drought scenarios.  
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Figure 6.1 Meteorological observations in the ‘normal’ hydrological winter of 
1974-75 at Creighton Tributary of Bad Lake. (a) air temperature, (b) 
precipitation as rainfall or snowfall. 
 
 

 To create drought scenarios, precipitation and air temperature from 

observed meteorological data were adjusted from observed values during the 
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period: November 1 1974 – April 30 1975.  Fall soil moisture content and 

vegetation height were changed as well. 10 drought scenarios were generated 

by altering one observation variable or module parameter at a time whilst 

holding other observation variables and module parameters constant in 

CRHM (Table 6.2). 

 

Table 6.1 Observed soil and vegetation conditions in the ‘normal’ 
hydrological winter of 1974-75 for three HRUs (fallow field, stubble field, 
and grassland coulee) at Creighton Tributary of Bad Lake. 
 

HRU Name 
Area 
(km2) 

Fall Soil Moisture  
(m3 water/m3 soil) 

Vegetation Height 
(m) 

Fallow Field 3.58 0.23 0.05 
Stubble Field 6.13 0.27 0.20 
Grassland 1.68 0.22 0.25 
 

 
Table 6.2 Drought scenarios in the CRHM simulation runs. 

Model 
Run # Description 

Model 
Run # Description 

5ºC rise in winter air 
temperature 1 

15% decrease in winter 
precipitation 6 

2 
30% decrease in winter 
precipitation 7 

25% decrease in fall 
volumetric soil moisture 

3 
50% decrease in winter 
precipitation 8 

50% decrease in fall 
volumetric soil moisture 

4 
1ºC rise in winter air 
temperature 9 

50% decrease in vegetation 
height 

5 
2.5ºC rise in winter air 
temperature 10 

90% decrease in vegetation 
height 
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6.1.1.2 Prairie Hydrological Drought Progression 

 To examine the combined impacts of major changes in meteorology, 

soils, and land covers on hydrological processes and snowmelt runoff during a 

drought, a simplified, synthetic ‘prairie hydrological drought progression’ was 

established from the general sequence of changes in precipitation, temperature, 

soil moisture and vegetation that was noted during the recent drought of 1999-

2004, and in previous prairie droughts (Maybank et al., 1995; Nkemdirim and 

Weber, 1999; Wheaton et al., 2005; Environment Canada, 2006b). The 

synthetic hydrological drought progression was also informed by winter 

progressions of temperature and precipitation observed at nearby Rosetown 

during the recent droughts of 1986-89 and 1999-2004 (Environment Canada, 

2006a). They show lower winter precipitation and sometimes higher air 

temperatures than the long term average (Figure 6.2). 

 The synthetic scenarios were used to adjust CRHM parameters (soil 

moisture, vegetation height) or variable inputs (precipitation, temperature) in a 

sequence that started with no drought (Hydrological Winter 1) then a winter 

meteorological drought (Hydrological Winter 2), then the effects of summer 

drought on winter drought (Hydrological Winter 3), then the recovery from 

winter meteorological drought but with antecedent conditions still in drought 

(Hydrological Winter 4), then recovery of summer crop growing conditions, 

fall soil moisture and winter meteorology, but not native vegetation heights 

(Hydrological Winter 5). The progression is fully quantified in Table 6.3 and 

is summarized as follows: 
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Figure 6.2 Average winter temperature and total winter precipitation (rainfall 
and snowfall) observed in Rosetown, Saskatchewan. during hydrological 
winters. (a) 1985-1990, (b) 1998-2005 with 25-year (1981-2005) hydrological 
winter temperature and precipitation normals (Environment Canada, 2006a). 
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Table 6.3 Parameters and changes in input variables for a hypothetical ‘prairie 
hydrological drought progression’. 
 

Drought Sequence 

Fall 
Volumetric 

Soil Moisture

Vegetation 
Height 

(m) 
Winter 

Precipitation 

Winter 
Temperature 

(ºC) 
Hydrological Winter 1

‘normal’ normal normal normal normal 
Hydrological Winter 2

‘severe’ normal normal -15% +2.5 
Hydrological Winter 3

‘severe’ -45% -60% -30% +2.5 
Hydrological Winter 4

‘recovery’ -45% -60% normal normal 
Hydrological Winter 5

‘recovery’ normal -35% normal normal 
 
 

Before a drought: 

Hydrological Winter 1, Normal: No drought, fall conditions shown in Table 

6.1 for typical for non-drought years at Bad Lake were used (early 1970s) and 

the 1974-75 meteorological sequence shown in Figure 6.1 was used. 

Going into a drought: 

Hydrological Winter 2, Severe Winter Drought: fall soil moisture is normal 

and vegetation is tall, but precipitation is lower and temperature is higher over 

the winter.  This is the first winter of meteorological drought.  

Hydrological Winter 3, Severe Multi-seasonal Drought: fall soil moisture is 

low, vegetation is short (poor crops the previous summer reduced stubble and 

‘trash’ on fields and native vegetation is becoming sparser), precipitation is 

lower, and temperatures are higher over the winter.  This is the peak of the 
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meteorological drought which has been continuous over the previous summer 

and fall and extends into winter. 

Coming out of a drought: 

Hydrological Winter 4, Winter Recovery: fall soil moisture is low and 

vegetation is short, but precipitation and temperature have recovered to 

normal winter values.  The meteorological drought is ‘broken’ with a return to 

non-drought winter meteorology; however antecedent conditions remain 

affected by the drought.  

Hydrological Winter 5, Multi-seasonal Recovery: fall soil moisture is high, 

precipitation and temperature are normal over the winter but natural 

vegetation remains low.  The meteorological drought ended the previous year 

and now soil moisture and cropped vegetation heights have also recovered, 

however native vegetation heights remain short and sparse.  

 

6.1.2 Results 

6.1.2.1 Drought Sensitivity of Winter Hydrology to Individual Parameters 

Snow accumulation after wind redistribution, blowing snow 

sublimation, snow cover duration, evaporation, and infiltration as well as 

surface runoff from snowmelt were estimated from CRHM for each HRU 

corresponding to each of the 10 drought scenarios (lower precipitation, higher 

air temperature, lower soil moisture content and shorter vegetation) shown in 

Table 6.2. The responses of these snowmelt runoff-related processes to 

changes in individual parameters in the 10 drought scenarios were examined 
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for whole basin based on the area-weighted responses in each HRU (Figure 

6.3). 

Figure 6.3 shows that the basin snow accumulation after wind 

redistribution (pre-melt SWE) was mainly sensitive to the amount of 

precipitation and less to air temperature and vegetation height, and showed no 

sensitivity to changes in soil moisture. The decline of the basin snow 

accumulation with decreasing precipitation was not linear. The rate of 

decrease in the basin snow accumulation increased as precipitation declined. 

This is related to suppression of blowing snow and snow drift formation in 

taller vegetation area (i.e. grassland HRU). The basin snow accumulation 

increased initially with rising air temperature and then decreased as the 

temperature warmed further (after increase by more than 2.5 ºC). This is 

attributed to the initial temperature increases contributing to icy and wet 

conditions which led to suppression of blowing snow in all fields (fallow, 

stubble, and grassland). As temperature increased a little more (e.g. > 2.5 ºC), 

the occurrence of winter rainfall increased and snowfall decreased, resulting 

in less snow accumulation. Basin snow accumulation decreased when 

vegetation height decreased. Decreasing vegetation height enhanced blowing 

snow and redistributed more snow from shorter vegetation area (fallow and 

stubble) to taller vegetation area (grassland) as  a  result, but  overall  basin  

snow  accumulation  diminished  because  the source areas (fallow and stubble) 

constitute over 85% of basin, resulting in more snow exported out of basin. 
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Figure 6.3 Simulated drought sensitivity of basin-wide snowmelt runoff-
related processes to individual parameters. (a) precipitation, (b) mean air 
temperature, (c) initial (fall) volumetric soil moisture content, (d) vegetation 
height. ‘normal’ denotes the values during hydrological winter of 1974-75. 
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Figure 6.3 Concluded. 
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The basin blowing snow sublimation was sensitive to changing 

precipitation, air temperature and vegetation height and insensitive to changes 

in soil moisture (Figure 6.3). Blowing snow sublimation relies on the 

occurrence of blowing snow and undersaturated conditions in the atmosphere. 

The frequency of blowing snow declined as the precipitation decreased, which 

resulted in suppression of blowing snow sublimation. The basin sublimation 

of blowing snow decreased by more than 80% when the precipitation declined 

by 50%. The basin sublimation also decreased as air temperature increased, 

with decreases of more than 60% and 85% as the temperature rose by 2.5 ºC 

and 5 ºC, respectively. This implies that the influence of enhancing 

atmospheric undersaturation at warmer conditions was overcome by the 

suppression of blowing snow with higher temperatures. Basin sublimation 

almost doubled when vegetation heights declined by 90%. This is associated 

with a higher frequency of blowing snow with shorter vegetation covers. 

The winter evaporation for the basin was insensitive to changes in soil 

moisture and vegetation height and somewhat sensitive to the precipitation 

and air temperature (Figure 6.3). Winter evaporation increased slightly with 

an initial drop in precipitation due to the shorter snow-covered season, but 

decreased as the precipitation was reduced by 50% resulting in the shortage of 

available water, which overwhelmed the effect of a longer period of bare 

surface to the evaporation. The reduced vegetation height contributed to lower 

snow accumulation and lower aerodynamic roughness height and thus 

decreased the winter evaporation for the shorter vegetation area (fallow and 
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stubble), but overall the basin winter evaporation responded little to the 

decreased vegetation height. The insensitivity of the winter evaporation to the 

initial fall soil moisture implies that the evaporation was not subject to the 

limitations of moisture supply provided that precipitation was normal. 

Snow cover duration was very sensitive to precipitation and air 

temperature and showed no sensitivity to the soil moisture and vegetation 

height (Figure 6.3). Either the initial decrease in the precipitation by 15% or 

increase in air temperature by 1 ºC resulted in a sharp decline of snow-covered 

period from 165 to 125 days, but no further large decreases as precipitation 

declined or air temperature warmed. This is attributed to reduction in the 

length of winter, with the greatest effect on the shoulder seasons of early and 

late winter. 

Infiltration was sensitive to changes in each of precipitation, air 

temperature, soil moisture, and vegetation height (Figure 6.3). The sensitivity 

was complex because infiltration is the combination of snowmelt infiltration 

to frozen soils and rainfall infiltration to unfrozen soils. Infiltration decreased 

as precipitation declined, with about a 50% decrease for a 50% decrease in 

precipitation. Infiltration increased by 45% as air temperature rose by 5 ºC. 

This was due to the winter precipitation shifting to rainfall with warmer 

conditions and then relatively rapid rainfall infiltration to unfrozen soils 

dominating over relatively slow snowmelt infiltration to frozen soils. 

Infiltration increased as initial fall soil moisture declined. This is consistent 

with Gray’s theory for prairie snowmelt infiltration (Gray et al., 1985). 
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Infiltration declined by 45% as vegetation height decreased by 50% due to 

decreased snow accumulation, but little decrease was found as vegetation 

height reduced further. 

Snowmelt runoff from the different HRUs within the basin flowed to 

the deeply-incised coulee (grassland), discharging at the outlet of Creighton 

Tributary. The basin discharge showed dramatic responses to changes in 

precipitation and air temperature (Figure 6.3). Snowmelt runoff decreased 

almost linearly to zero when the precipitation decreased by 50% to 65 mm or 

when air temperature increased by 5 ºC to -2 ºC. The decline in discharge with 

declining precipitation was due to winter precipitation infiltrating and 

evaporating preferentially to forming surface runoff. The decline in discharge 

with increasing air temperature was due to the conversion of winter snowfall 

to rainfall, mid winter melting of the snowpack, greater infiltration into 

unfrozen soils and greater evaporation losses over the winter due to the shorter 

snow season. Discharge declined linearly with decreasing soil moisture as 

more melt water infiltrated. The response of discharge to the changes in 

vegetation height was within 1% to 2% of the original ‘normal’ discharge. 

 

6.1.2.2 Prairie Hydrological Drought Progression 

 Major hydrological processes during the hydrological winter were 

simulated corresponding to the hypothetical prairie hydrological drought 

progression summarized in Table 6.3 and are shown in Figure 6.4. The figure 

shows that how typical combinations of meteorological, soil and land cover 
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conditions may progress during drought and also shows the response of each 

HRU to these conditions. Hydrological Winter 1 is the ‘normal’ winter with 

no drought; while Hydrological Winters 2 and 3 are progressively stronger 

‘severe drought’ and Hydrological Winters 4 and 5 have progressively 

recovering state parameters (‘recovery’). Figure 6.4(a) shows that snow 

accumulation dropped during the severe drought as results of rising 

temperature and decreasing precipitation. Interestingly, the grassland HRU 

had slightly less snow accumulation than on stubble HRU during the severe 

drought. This is due to the suppression of blowing snow redistribution to the 

grassland from the stubble. There was some snow redistribution from fallow 

to stubble, but not enough to “fill” the stubble. Figure 6.4(b) illustrates that the 

differences in snow-covered period among the HRUs became smaller in the 

severe drought period. Blowing snow sublimation was heavily suppressed 

during severe drought and only occurred in short vegetation area (fallow 

HRU); while it increased during the recovery period as precipitation and 

temperature returned to normal but vegetation still stayed short. Figure 6.4(d) 

shows that increasing winter evaporation in severe drought was more 

prominent in taller vegetation areas (stubble and grassland HRUs). For all 

HRUs, infiltration declined during the severe drought period, started to 

increase in the first recovery winter (Hydrological Winter 4) and returned to 

normal in the second year of recovery. It should be noted that changes in 

infiltration for grassland HRU were relatively small throughout the drought 

progression compared to other HRUs. Figure 6.4(f) shows that surface 
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snowmelt runoff entirely ceased for all HRUs in the severe drought period and 

almost recovered for fallow and stubble HRUs at the end of recovery period. 

  

 

Figure 6.4 Simulated hydrological processes for individual HRU at Creighton 
Tributary in prairie winter hydrological drought progression. Changing 
processes from normal (hydrological winter 1) to severe drought (hydrological 
winter 2, 3) to recovery (hydrological winter 4, 5): (a) pre-melt snow 
accumulation (b) snow cover duration (c) blowing snow sublimation (d) 
evaporation (e) infiltration (f) snowmelt runoff. 
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 The responses in hydrological processes to the combined conditions of 

meteorology, soil, and land cover in the prairie hydrological drought 

progression were estimated for Creighton Tributary basin based on the area-

weighted response in each HRU (Figure 6.5). Sublimation of blowing snow 

was largely suppressed during severe drought, but it was enhanced during 

recovery when snowfall returned but vegetation heights remained low. As a 

result, even though snowfall returned to normal after the severe drought 

period, snow accumulation did not rebound until the very end of the recovery 

period when vegetation (stubble, some grass) had grown to its former height 

and density.  Interestingly, rainfall declined only slightly during the severe 

drought as rising air temperatures increased the proportion of precipitation 

falling as rain and this compensated for the overall decrease in precipitation 

amount. A shorter snow-covered period developed in the severe drought due 

to the combined effects of lowered snowfall and higher temperature. 

Evaporation increased slightly during severe drought and somewhat during 

the first year of recovery (Hydrological Winter 4) but was not strongly 

affected by the drought progression. Infiltration was more strongly affected by 

drought and declined progressively through severe drought and started to 

bounce back during the recovery period. Basin streamflow discharge from the 

surface melting water runoff showed the greatest response to the drought 

progression, ceasing completely during the severe drought and not fully 

recovering until the end of the recovery period. The results show that although 

the winter meteorological drought only occupied Hydrological Winters 2 and 
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Figure 6.5 Simulated hydrological processes for Creighton Tributary basin in 
prairie winter hydrological drought progression. Changing processes from 
normal (hydrological winter 1) to severe drought (hydrological winter 2, 3) to 
recovery (hydrological winter 4, 5): (a) snowfall, rainfall, pre-melt snow 
accumulation, snow cover duration (b) blowing snow sublimation, 
evaporation, infiltration, basin discharge. It should be noted that lines 
connecting points among years are only for visual purpose and do not imply 
interpolation.  
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3, the system required two more winters for the hydrological drought to end. 

This shows that how the system responded to effect of summer drought on 

soil moisture storage and the growth cycle of crops and native vegetation. 

 

6.1.3 Discussion 

  There are several interesting and somewhat non-intuitive results from 

the sensitivity of winter hydrology to the individual drought parameters.  

Snow accumulation was affected by the winter precipitation, air temperature 

and vegetation height but did not show a particularly strong sensitivity to any 

of them. This resilience was due to wind redistribution of snow being very 

sensitive to drought meteorology and more snowfall remaining on the ground 

during drought as a result of suppression of blowing snow by meteorological 

conditions in a drought. Winter evaporation did not show great enhancement 

with drought conditions and any increase in evaporation was more than 

balanced out by the decrease in blowing snow sublimation. No strong trend 

was found for infiltration in a drought because so many processes controlled 

the fluxes and offset each other for specific drought conditions. A shorter 

snow-covered period developed under drought meteorology and this resulted 

in earlier spring snowmelt runoff. Snowmelt runoff showed a dramatic 

decrease with drought meteorology and this was exacerbated by decreased soil 

moisture during drought. That snow accumulation was not strongly affected 

by drought but that snowmelt runoff can easily cease under typical drought 

meteorology and soil conditions has important implications. It indicates that 
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the prairie winter hydrological system magnifies the impact of drought in 

translating it to streamflow generation in springtime. This has severe 

implications for the prairie wetlands, ponds, lakes and the recharge of 

groundwater systems from these areas during drought. These implications 

have been described and confirmed by van der Kamp et al. (2003) and the 

mechanisms discussed by Hayashi et al. (2003).  

  The prairie drought progression scenario provides insight into the 

sequential development of drought and the hydrological impact when many 

meteorological variables and surface parameters vary in a consistent temporal 

pattern. The early suppression and then later amplification of blowing snow 

sublimation serves to reduce the variability of snow accumulation during a 

drought. The main effect of the synthetic drought is complete cessation of 

snowmelt runoff and streamflow discharge due to the combination of lower 

precipitation, warmer winter temperatures and drier soils. It should be noted 

that this combination does not always develop during a Canadian Prairie 

drought. The behaviour of streamflow discharge as a drought develops in this 

scenario is very non-linear, because all meteorological and surface factors 

work to diminish runoff generation at once. The observed departures from 

average conditions at Rosetown (Figure 6.2) show some association between 

decreased precipitation and decreased temperature during hydrological winter 

in the recent drought. Perhaps the synoptic patterns resulting in low 

precipitation also cause low temperatures in the hydrological winter. This is 
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different from summer drought where higher temperatures are associated with 

lower precipitation. 

 

6.2 Impact of 1999–2004/05 Drought at St. Denis, Saskatchewan 

6.2.1 Methods 

6.2.1.1 Field Observations 

  At the St. Denis NWA, extensive measurements of air temperature, 

relative humidity, wind speed (2 metre and 10 metre), precipitation, radiation, 

and vapour pressure along with field observations of land cover, soil 

properties, and wetland water level were conducted by University of 

Saskatchewan and Environment of Canada in the 1990s and 2000s. The 

methods used for collecting these variables and parameters are described in 

Appendix C. The soil properties and land cover information for the basin of 

Wetland 109 during the recent drought period were summarized and shown in 

Table 6.4. 

 

6.2.1.2 Drought Impact Simulations 

  CRHM was used to estimate the water balance during winter and 

spring period for the basin of Wetland 109 during 1999-2006. Two HRU 

(cultivated and wetland) shown in Table 6.4 were built to run the simulations 

for the basin. Meteorology during hydrological winter period (November 1-

April 30) and soil and land cover conditions described in Table 6.4 were used 

in CRHM to simulate the drought impact on the wetland snowmelt hydrology. 
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Table 6.4 Observed soil properties and land cover information at the Wetland 
109 during 1999-2006. 
 

HRU 
Area 
(km2) 

Vegetation 
Height 

(m) 
Fall Soil Moisture  
(m3 water/m3 soil) 

Porosity 
(ratio)

1999 - 2000 
Cultivated (stubbles) 0.01601 0.3 0.21 0.48 
Wetland 0.00412 5 0.23 0.54 

2000 - 2001 
Cultivated (stubbles) 0.01601 0.1 0.19* 0.48 
Wetland 0.00412 5 0.22* 0.54 

2001 - 2002 
Cultivated (stubbles) 0.01601 0.15 0.19 0.48 
Wetland 0.00412 5 0.22 0.54 

2002 - 2003 
Cultivated (fallows) 0.01601 0.001 0.19 0.48 
Wetland 0.00412 5 0.22 0.54 

2003 - 2004 
Cultivated (stubbles) 0.01601 0.1 0.22 0.48 
Wetland 0.00412 5 0.25 0.54 

2004 - 2005 
Cultivated (stubbles) 0.01601 0.1 0.19 0.48 
Wetland 0.00412 5 0.22 0.54 

2005 - 2006 
Cultivated (stubbles) 0.01601 0.2 0.27 0.48 
Wetland 0.00412 5 0.32 0.54 
Note: * unlimited soil infiltrability corresponding to macropore development 

was set up and used for the CRHM simulations. 
 
 
 
6.2.2 Results 

6.2.2.1 Air Temperature and Precipitation Anomalies 

The observed cumulative precipitation (rainfall and snowfall) and air 

temperature for the hydrological winters during 1999-2006 are shown in 

Figure 6.6 and Figure 6.7. Figure 6.6 shows that precipitation was consistently 

low for hydrological winters of 1999-2000, 2000-01, 2001-02, 2003-04, and 
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2004-05 with cumulative values of 73.6 mm, 71.2 mm, 58.8 mm, 84.8 mm, 

and 77.5 mm, respectively. Precipitation in the hydrological winter of 2002-03 

was high with total of 123.8 mm. The highest cumulative precipitation for the 

period of 1999-2006 was 148.1 mm, in the winter of 2005-06. Figure 6.7 

shows that air temperatures were cold during the hydrological winters of 

2000-01, 2001-02, 2002-03, and 2003-04 with the average temperature below 

-8 °C for all these 4 winters. Air temperatures during hydrological winters of 

1999-2000 and 2004-05 slightly increased, with the average temperature of -

6.2 °C and -7.3 °C, respectively. The highest average temperature for the 

period 1999-2006 was -5.4 °C, in the winter of 2005-06. 

Observed cumulative precipitation and observed air temperature were 

compared to the long term average precipitation and long term air temperature 

(Figure 6.8). Figure 6.8(a) shows that 30-year (1975-2005) average 

precipitation during the hydrological winter (November 1-April 30) was very 

close between Saskatoon and Humboldt, 85.4 mm and 86.1 mm, respectively 

(Environment Canada, 2006a). Compared to the 30-year average precipitation 

in  Saskatoon,  the  precipitation  was  14%,  17%,  and  31%  lower  for the 

hydrological winters of 1999-2000, 2000-01, and 2001-02, respectively, with 

similar values for Humboldt. Compared to the 30-year average in Saskatoon, 

the precipitation was 45% and 73% higher for the hydrological winters of 

2002-03 and 2005-06, respectively, with similar values for Humboldt. The 

precipitation in the hydrological winter of 2003-04 was very near the average 

in  Saskatoon  and  Humboldt.   In  the  hydrological  winter of  2004-05,  the 
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Figure 6.6 Observed cumulative precipitation for hydrological winters during 
1999-2006 at St. Denis NWA. 
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Figure 6.7 Observed air temperature for hydrological winters during 1999-
2006 at St. Denis NWA. 
 

 

 117



 

Figure 6.8 Comparisons of winter precipitation and temperature to 30-year 
(1975-2005) mean precipitation and temperature during hydrological winters 
of 1999-2006. 30-year mean precipitation and temperature derived from 
Environment Canada, 2006a. 
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precipitation was slightly below the average, about 9% less than the 30-year 

average in Saskatoon and Humboldt. It should be noted that the winter 

precipitation collected from the ten-metre station at St. Denis during 1999-

2005 was replaced by the winter precipitation from a nearby Meteorological 

Service of Canada station at Humboldt. 

 Figure 6.8(b) shows that 30-year (1975-2005) average temperature 

during hydrological winter (November 1-April 30) was -8.2 °C and -9.2 °C 

for Saskatoon and Humboldt, respectively (Environment Canada, 2006a). The 

seven-year (1999-2006) mean hydrological winter temperature at St. Denis 

was -7.6 °C. This implies that slightly warmer than average conditions 

developed during the drought. The standard deviation for the temperature 

during 1975-2005 was 1.9 °C for both Saskatoon and Humboldt; that for the 

temperature during 1999-2006 was 1.4 °C at St. Denis. This indicates the 

winter temperature has less variability during the seven-year period (1999-

2006) compared to the winter temperature during 30-year period (1975-2005). 

 

6.2.2.2. Drought Impact on Wetland Snow Hydrology 

Major wetland snow hydrology processes during the hydrological 

winter were simulated for the individual HRU at Wetland 109 during 1999-

2006 (Figure 6.9).  The figure shows the combined effects of changing 

meteorology and changing soil and land cover conditions on the Canadian 

prairie  wetland  snowmelt  hydrology  during  the  drought.   The  figure also  
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Figure 6.9 Simulated hydrological processes for individual HRU at the 
Wetland 109 during 1999-2006. Changing processes: (a) total snow 
accumulation (b) snow cover duration (c) blowing snow sublimation (d) 
evaporation (e) rainfall infiltration (f) snowmelt infiltration (g) snowmelt 
runoff. 
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illustrates the response of each HRU (cultivated field and wetland) to these 

conditions.  

Figure 6.9(a) shows that the cumulative snow accumulation (SWE) 

was consistently low for both cultivated field and wetland during the 

hydrological winters of 1999-2000, 2000-01, and 2001-02; ‘severe drought’ 

periods. There was only 46%-57% of SWE in the cultivated field and 30%-

45% of SWE in the wetland compared to the snow accumulation during 2002-

03 and 2005-06; ‘normal’ periods. There were moderate amounts of SWE 

during the hydrological winters of 2003-04 and 2004-05; ‘recovery’ periods. 

There was great snow accumulation in the wetland HRU during 2002-03 

when compared to that during 2005-06; this is because the summer-fallowed 

field in 2002 resulted in more blowing snow redistributed to the wetland 

(‘sink’). Figure 6.9(b) shows that the snow-covered periods of the two HRUs 

were similar during the severe drought periods, with much shorter duration in 

the hydrological winter of 1999-2000 compared to the recovery and normal 

periods. Figure 6.9(c) shows that sublimation of blowing snow was 

persistently low, nearly zero for the severe drought periods, due to 

suppression of blowing snow. Winter evaporation in the cultivated field was 

not very sensitive to the changing conditions during drought; compared to the 

normal periods (2002-03 and 2005-06), evaporation in the wetland tended to 

be higher during some severe drought periods, 1999-2000 and 2000-01, due to 

the shorter snow-covered season and earlier occurrence of evaporation in the 

spring. Figure 6.9(e) shows that there was no difference in rainfall infiltration 
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into unfrozen soils between HRUs. Snowmelt infiltration into frozen soils was 

sensitive to the amount of snow accumulation and soils conditions. Figure 

6.9(a) and Figure 6.9(f) show that snowmelt infiltration in the wetland during 

2002-03 increased as snow accumulation increased; snowmelt infiltration in 

both HRUs increased when macropores developed during 2000-01. Figure 

6.9(g) demonstrates that compared to the normal periods (2002-03 and 2005-

06), there was much lower surface runoff from melting snow during the 

severe drought periods, with decreases of 35-58 mm and 75-90 mm snowmelt 

runoff for the cultivated field and wetland, respectively. During drought, 

lower snow accumulation, enhanced evaporation, and higher ratio of 

snowmelt infiltration to snow accumulation all affect the runoff generation in 

Canadian prairie wetlands. 

The evolution of major wetland snow hydrology processes during the 

hydrological winters was simulated for the basin of Wetland 109 during 1999-

2006 (Figure 6.10). The cumulative responses of these processes to the 

combined conditions of meteorology, soil, and land cover were estimated at 

end of the winter (Figure 6.11). Compared to the ‘normal’ periods, 2002-03 

and 2005-06, both snowfall and rainfall during the hydrological winter were 

consistently low for the ‘severe drought’ periods, 1999-2002. As a result, 

compared to the normal periods, snow accumulation was 50-55% lower for 

the basin during the severe drought periods. Snow accumulation was moderate 

for the hydrological winters of 2003-04 and 2004-05, ‘recovery’ periods. 

Basin snow-cover season was 17-63 days shorter during the severe drought 
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Figure 6.10 The simulated evolution of wetland snow hydrology processes 
during the hydrological winters of 1999-2006 at the Wetland 109. 
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Figure 6.11 Simulated hydrological processes for the basin of Wetland 109 
during 1999-2006. Changing processes: (a) snowfall, rainfall, total snow 
accumulation, snow cover duration, blowing snow sublimation (b) 
evaporation, rainfall infiltration, snowmelt infiltration, total infiltration, 
snowmelt runoff. It should be noted that lines connecting points among years 
are only for visual purpose and do not imply interpolation. 
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periods compared to the normal periods. Sublimation of blowing snow was 

low for the basin throughout the period of 1999-2006; this is due to lack of 

blowing snow occurrence from low snowfall and relatively tall vegetation 

cover. Basin winter evaporation was not strongly sensitive to the changing 

conditions during 1999-2006, with increases of 3 to 8 mm during severe 

drought periods. Basin infiltration did not show a strong trend with changing 

conditions during 1999-2006. This is because infiltration comprises both 

rainfall infiltration into unfrozen soils and snowmelt infiltration into frozen 

soils; both are complex processes controlled by combinations of hydro-

meteorological condition and soil status. Basin surface runoff from snowmelt 

was much lower during the severe drought periods, approximately 45-65 mm 

less compared to that in the normal periods. Snowmelt runoff was very low in 

2000-01 and this is related to the formation of macropores in dry soils 

(Bodhinayake and Si, 2004; van der Kamp et al., 2003), causing unlimited soil 

infiltrability that allowed all melt water to infiltrate into soils (Gray et al., 

2001). Similar results were found in the springtime water level during the 

drought. Figure 6.12 shows the maximum spring water level observed in 

Wetland 109 during 1997-2005; the water level was much lower during the 

severe drought periods compared to the non-drought periods. 

 

6.2.3 Discussion 

 Severe winter drought occurred during 1999-2002. It began with an 

inadequate precipitation during the hydrological winter (November 1-April 30) 
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Figure 6.12 Observed springtime water levels at the Wetland 109, St. Denis 
NWA during 1997-2005. Note that water level was not measured in April 
2003. Water level data acquired from van der Kamp et al., 2006b. 
 
 
 
of 1999-2000. This is a meteorological drought characterized by below 

average precipitation over an extended period of time (Wilhite and Glantz, 

1985). The occurrence of meteorological drought on the Canadian Prairie 

during 1999-2002 was related to large-scale disruptions of atmospheric 

circulation pattern and displacement of air mass (Liu et al., 2004; Bonsal and 

Wheaton, 2005; Shabbar, 2006). As a result, low soil moisture developed 

during this period, leading to reduced availability of soil water to support 

crops, an agricultural drought. With these atmospheric and soil conditions, 

hydrological drought emerged during the hydrological winters of 1999-2002, 
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resulting in much less springtime discharge of snowmelt to wetland area and 

subsequently drying out of wetland. 

 Compared to the synthetic prairie drought progression described 

earlier, the recent multi-year drought of 1999-2004/05 has distinctive 

characteristics. A three-year (1999-2002) severe winter drought period was 

followed by a normal year (2002-03) and then a two-year (2003-05) recovery 

period, with slightly below average precipitation and somewhat lower 

snowmelt runoff and wetland water level, and then returning to normal (2005-

06). This is related to the nature of drought; that is, drought is a gradual 

process and its beginning and end is hard to define (Wilhite and Buchanan-

Smith, 2005). Wetland 109 at St. Denis represents a sub-humid, partly 

wooded and relatively poorly-drained site on the Canadian Prairies; the 

drought impact on snowmelt hydrology and response in surface water supplies 

to the drought was specific to such a site. 

 The winter season discussed here is the hydrological winter, extending 

from November to end of April, during which hydrological processes such as 

snowfall, snowmelt, and snowmelt runoff occur. Below average air 

temperature developed during the hydrological winter on the Canadian prairie 

regions (e.g. Rosetown, St. Denis), while positive temperature anomalies were 

found during the meteorological winter (i.e. Dec, Jan, and Feb) in these 

regions (Environment Canada, 2007). This suggests that for cold regions such 

as the Canadian Prairies, the conventional definition of winter by meteorology 

sometimes is not accurate enough to provide information for analyzing the 
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effects of drought on hydrology. More study is needed using a functional 

definition of winter in order to improve the understanding of drought impacts 

on the hydrological processes over the Prairies. 
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Chapter 7 

7.0 Conclusions 

 Spatially distributed and spatially aggregated approaches were used to 

examine the modelling scale for snow accumulation (SWE) and snowmelt at a 

Canadian prairie basin – St. Denis NWA. The simulated results of pre-melt 

SWE evolution, end of winter SWE, and daily snowmelt were compared with 

the observed pre-melt SWE, cumulative SWE, and daily snowmelt on seven 

Hydrological Response Units (HRUs). Both approaches simulated the 

development and timing of pre-melt SWE well with relatively small 

differences with observations, and both approaches generated end of winter 

SWE that was close to the observations on most HRU. Both approaches were 

able to estimate large amounts of snow transport to and accumulation on the 

wetland HRU, which is critical to the water balance. 

Comparisons of areal average end of winter SWE, areal daily 

snowmelt, snowmelt duration, and snow-covered area were also made 

between the two modelling approaches. Results showed that both approaches 

had similar levels of accuracy. This is because models with similar physics 

were used in both approaches. However, the spatially aggregated approach 

had a computational advantage; the computational time for the spatially 
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aggregated approach was about one minute, while the spatially distributed 

approach took over 30 minutes. Thus, the spatially aggregated approach was 

selected for estimation of sow accumulation and snowmelt on the Canadian 

Prairies. 

The Cold Regions Hydrological Modelling platform (CRHM) was 

used to derive a snow hydrology model for the Canadian Prairies and was run 

at two drainage basins: Creighton Tributary of Bad Lake, Saskatchewan and 

Wetland 109 at St. Denis, Saskatchewan. The snow hydrology model scheme 

in CRHM used the spatially aggregated modelling approach to calculate the 

water balance during winter and spring. Simulated results of pre-melt SWE 

and springtime snowmelt runoff were compared to the field observations, 

showing a reasonable performance of CRHM in estimating the snowmelt 

runoff on the prairies. Due to the importance of wetlands, ponds, and dugouts 

in prairie hydrological systems, addition of a surface storage model to CRHM 

would make a significant improvement to this prairie snowmelt runoff model. 

A drought sensitivity study of winter hydrological processes to 

individual components of meteorological, soil and land cover conditions 

during a drought was conducted at Bad Lake. Results showed that blowing 

snow accumulation and sublimation were very sensitive to winter 

precipitation and air temperature as well as to the changing land covers. Snow 

cover duration initially decreased when drought meteorology was induced but 

showed little sensitivity to the onset of severe drought conditions. Winter 

evaporation was relatively insensitive to drought conditions. Infiltration was 
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sensitive to changes in each of winter precipitation, air temperature, soil 

moisture, and land covers during the drought. Snowmelt runoff showed a 

dramatic response to drought and ceased when winter precipitation dropped 

by 50% or air temperature rose by 5 °C. 

A multi-year prairie winter hydrological drought progression was 

proposed and simulated at Bad Lake. In this drought progression, severe 

winter drought meteorology developed for the first two years of drought but 

fall soil moisture and vegetation recovered after the winter meteorology 

returned to normal. The combined condition of winter precipitation dropping 

by 15% and air temperature increasing by 2.5 °C was sufficient to cause the 

cessation of snowmelt runoff and streamflow discharge. 

 A study of impact of the 1999-2005 drought conducted at the Wetland 

109, St. Denis showed that winter precipitation was largely reduced during 

1999-2002, the severe drought periods. During these periods, snow 

accumulation was low due to decreasing frequency of blowing snow; winter 

evaporation slightly increased due to shorter snow-covered season and earlier 

occurrence of evaporation in the spring. The sensitivity of infiltration to 

drought was complex because infiltration comprises rainfall infiltration into 

unfrozen soils and snowmelt infiltration into frozen soils and is affected by 

both winter precipitation and soil conditions. Snowmelt runoff was much 

lower during the severe drought periods, leading to a drying out of the wetland.  
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APPENDIX A – FIELD TRANSECTS PHOTOS 
 
 
 
 
 
 
 
 
 
 
 
 
Photo A.1 Field transect 1 north end (left) and south end (right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Photo A.2 Field transect 2 north end (left) and south end (right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Photo A.3 Field transect 2 wetland area (left) and field transect 3 (right). 
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Photo A.4 Field transect 4 north end (left) and south end (right). 
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APPENDIX B – MEAN VALUES OF VOLUMETRIC SOIL 
MOISTURE, VEGETATION HEIGHT, SWE, AND SNOW DENSITY 

 
Table B.1 Mean observed fall volumetric soil moisture and mean vegetation 
height on field transects, St. Denis. 
 

Transect # Mean Volumetric Soil Moisture 
(%) 

Mean Vegetation Height 
(m) 

1 26.7 0.18 
2 25.4 0.79 
3 31.1 0.60 
4 30.1 0.30 
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Figure B.1 Mean observed SWE on field transects, St. Denis. 
 
 

 145



 146

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

12/29/2005 1/23/2006 2/17/2006 3/14/2006 4/8/2006

Date

M
ea

n 
D

en
si

ty
 (g

/c
m

3 )

Transect 1

Transect 2

Transect 3

Transect 4

 
Figure B.2 Mean observed snow density on field transects, St. Denis. 
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APPENDIX C – METHODS FOR FIELD DATA COLLECTION 
 

C.1 Field observations at Bad Lake 
 

 At Bad Lake IHD Research Basin, an instrumentation station was 
installed and maintained to measure air temperature, relative humidity, and 
wind at 2 metre height as well as radiation. Air temperature was measured 
with nickel-iron resistance thermometers, which were housed in double 
radiation shields with natural ventilation. Measurements of relative humidity 
were obtained with the Honeywell dewcells (Li-C1 type), which were 
shielded against solar radiation and naturally ventilated. The Rimco 
‘Miniature-cup’ impulse type anemometers were used for wind speed 
measurements; a potentiometer attached to a wind vane was used to measure 
wind direction. The net all-wave radiation was measured with a Funk 
(Middleton) Pyrradiometer. Copper-constantan thermocouples placed in the 
snowpack and placed in the underlying soil provided measurements of snow 
temperature and soil temperature, respectively. These measurements described 
above were automatically recorded by a Hewlett-Packard mini-computer 
which was housed in the instrument box. 
 In addition, Meteorological Service of Canada Nipher gauges were 
used to provide point measurements of snowfall data. Both depth and density 
of snow were measured on snow survey courses on different land uses to 
provide measurements of areal snow water equivalent. The snow depth was 
determined by ruler; the snow density was decided by gravimetric method. 
Also, Tipping Buckets attached with Solid State Recorders were used to 
record rainfall data. For the fall soil moisture, two probe gamma density meter 
in PVC tube was used to monitor the changes in density of the soil and to 
estimate soil moisture. For the streamflow monitoring, stage recorder at a weir 
by the outlet of Creighton Tributary of Bad Lake was used to estimate 
streamflow discharge. 
 
 
C.2 Field observations at St. Denis 
 
 At St. Denis NWA, measurements of air temperature, relative 
humidity, wind speed, wind direction, and radiation were collected from ten-
metre tower stations and station with eddy correlation system. The 
instrumentations included Campbell Scientific RM Young 6-Plate and 10-
Plate Gill Radiation Shield sensors for measuring air temperature and relative 
humidity; Campbell Scientific RM Young Wind Monitor was used to measure 
wind speed and wind direction. The net radiation was measured using 
Campbell Scientific Kipp & Zonen Net Radiometer, which consists of two 
pyranometers to measure short-wave radiation and two pyrgeometers to 
measure long-wave radiation. Measurements of precipitation were acquired 
from precipitation gauges station, which consists of Meteorological Service of 
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Canada Nipher gauge for snowfall measurement and Tipping Bucket for 
rainfall measurement. The above stations all had measuring sensors connected 
to Campbell Scientific datalogger that allows automatic data recording. 
 In addition, vegetation surveys were taken to determine vegetation 
type and vegetation height on field transects with different land uses: 
cultivated field, grassland, and wetland; simple measurements by metre stick 
were used in the vegetation surveys. Soil surveys were conducted to determine 
fall soil moisture on field transects with different land uses.  Soil core samples 
(0-40 cm) were taken and oven-drying method was used to estimate the 
volumetric soil moisture and bulk density. Total porosity of soil was 
calculated from bulk density (g/cm3) and particle density (g/cm3) as: 

Bulk DensityTotal Porosity = 1 - 
Particle Density

             [C.1] 

Campbell Scientific TDR soil probes were also used for additional 
measurements of fall volumetric soil moisture. On the field transects, snow 
surveys of depth and density were taken to determine snow water equivalent 
(SWE). The snow depth was determined by ruler; the snow density was 
decided by gravimetric method. SWE (mm) was calculated as: 

SWE = 10Dρ                                                 [C.2] 
where D (cm) is the snow depth at each point of a transect and ρ  (g/cm3) is 
the mean snow density of a transect. For the wetland water level, a graduated 
stick with a 4 cm diameter circular plate at the bottom was used for water 
depth measurements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX D – C++ PROGRAMMING CODE FOR THE SIMPLIFIED 
WINDFLOW MODEL 

 
 Simplified windflow model (Walmsley et al., 1989) was programmed 
in C++ code and integrated into CRHM as ‘wind_adjust’ module to calculate 
windspeed due to local topographic change. The coding is complied in 
Borland C++ Builder and is shown as follow: 
 

Part I – NewModules_withwind.cpp file 
 
// 09/18/06 
//--------------------------------------------------------------------------- 
#include <vcl.h> 
#pragma hdrstop 
#include "NewModules_withwind.h" 
#include "DefCRHMGlobal.h" 
#include "common.h" 
#include <algorithms> 
//--------------------------------------------------------------------------- 
#pragma package(smart_init) 
 
using namespace std; 
 
extern double xLimit; 
extern long lLimit; 
 
Administer DLLModules("09/18/06", "Modules_New"); 
 
void MoveModulesToGlobal(String DLLName){ 
  DLLModules.AddModule(new Classwind_adjust("wind_adjust", 09/18/06")); 
  DLLModules.LoadCRHM(DLLName); 
} 
 
// WindAdjust module that adjusts the wind speed due to topographic feature 
 
void Classwind_adjust::decl(void) { 
   
  declvar("hru_Uadjust", NHRU, "adjusted wind speed", "(m/s)", hru_Uadjust); 
  declvar("hru_Uchange", NHRU, "wind speed change due to topography", 
  "(m/s)", &hru_Uchange); 
  declvar("WR", NHRU, "wind ratio", "()", &WR); 
  declparam("Zwind", NHRU, "[10.0]", "0.0", "100.0", "wind instrument    
  height", "(m)", &Zwind); 
  declparam("A", NHRU, "0.0", "0.0", "4.4", "coefficient for wind speed    
  change due to topography, 0.0 = flat terrain, 2.5 = 2D escarpments, 3.0 = 2D   
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  hills, 3.5 = 2D rolling terrain, 4.0 = 3D hills, 4.4 = 3D rolling terrain", "()",   
  &A); 
  declparam("B", NHRU, "0.0", "0.0", "2.0", "coefficient for wind speed    
  change due to topography, 0.0 = flat terrain, 0.8 = 2D escarpments, 1.1 = 3D   
  rolling terrain, 1.55 = 2D rolling terrain, 1.6 = 3D hills, 2.0 = 2D hills", "()",  
  &B); 
  declparam("L", NHRU, "[40.0]", "40.0", "300.0", "upwind half-width at half  
  height", "(m)", &L); 
  declparam("obs_elev", NHRU, "[637]", "0.0", "100000.0", "measurement  
  altitude", "(m)", &obs_elev); 
  declparam("hru_elev", NHRU, "[637]", "0.0", "100000.0", "altitude", "(m)",  
  &hru_elev); 
  declgetvar("obs",     "hru_u", "(m/s)", &hru_u); 
 
} 
 
void Classwind_adjust::init(void) { 
  nhru = getdim(NHRU); 
} 
 
void Classwind_adjust::run(void) { 
 
/*Walmsley, Talor and Salmon's simple guidelines for estimating wind speed 
variations due to topographic features*/ 
 
  for (int hh = 0; hh < nhru; hh++) { 
    double h = hru_elev[hh] - obs_elev[hh]; /* topgraphic feature height*/ 

double Smax = B[hh] * h / L[hh]; /* maximum decay of fractional speed-up 
                                                           ratio*/ 
double S = Smax * exp(-A[hh]*Zwind[hh]/L[hh]); /* decay of fractional  
                                                                                      speed-up ratio*/ 

 
    hru_Uchange[hh] = S * hru_u[hh]; 
    hru_Uadjust[hh] = hru_Uchange[hh] + hru_u[hh]; 
    WR[hh] = hru_Uadjust[hh] / hru_u[hh]; 
  } 
 
} 
 

Part II – NewModules_withwind.h file 
 
//--------------------------------------------------------------------------- 
#ifndef OurModulesH 
#define OurModulesH 
//--------------------------------------------------------------------------- 
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#include "ClassModule.h" 
 
using namespace std; 
 
extern "C" void __declspec(dllexport) MoveModulesToGlobal(String 
DLLName = "CRHM new"); 
 
class Classwind_adjust : public ClassModule { 
public: 
 
Classwind_adjust(string Name, String Version = "undefined") : 
ClassModule(Name, Version) {}; 
 
long nhru; 
 
// declared variables 
float *hru_Uadjust; 
float *hru_Uchange; 
float *WR; 
 
// declared parameters 
const float *Zwind; 
const float *A; 
const float *B; 
const float *L; 
const float *obs_elev; 
const float *hru_elev; 
 
// varaible inputs 
const float *hru_u; 
 
void decl(void); 
void init(void); 
void run(void); 
}; 
#endif 
 
 
 
 
 
 
 
 
 

 151



 152

APPENDIX E – CHARACTERISTICS OF PARAMETER FOR 19 
HRUS IN SPATIALLY AGGREGATED MODELLING APPROACH 

 

HRU Name Symbols
Area 
(km2)

Slope 
Aspect 

(°) 

Slope 
Angle 

(°) 
Elevation 

(m) 
Vegetation 
Height (m) 

Fetch 
Distance 

(m) 
Stubble South 
Steep Slope SSSS 0.1 180 8 550 0.15 300 

Stubble South 
Gentle Slope SSGS 0.1 180 5 548 0.15 300 
Stubble North 
Steep Slope SNSS 0.1 0 8 550 0.15 300 

Stubble North 
Gentle Slope SNGS 0.1 0 5 548 0.15 300 
Stubble Level SL 1.05 0 0 555 0.15 300 
Stubble Steep 
Slope Hilltop SSSH 0.1 0 8 565 0.15 300 

Stubble 
Gentle Slope 

Hilltop SGSH 0.1 0 5 563 0.15 300 
Stubble Steep 
Slope Valley SSSV 0.1 0 8 540 0.15 300 

Stubble 
Gentle Slope 

Valley SGSV 0.1 0 5 542 0.15 300 
Grass South 
Steep Slope GSSS 0.1 180 8 550 0.5 300 
Grass South 
Gentle Slope GSGS 0.1 180 5 548 0.5 300 
Grass North 
Steep Slope GNSS 0.1 0 8 550 0.5 300 
Grass North 
Gentle Slope GNGS 0.1 0 5 548 0.5 300 
Grass Level GL 1.05 0 0 555 0.5 300 
Grass Steep 

Slope Hilltop GSSH 0.1 0 8 565 0.5 300 
Grass Gentle 
Slope Hilltop GGSH 0.1 0 5 563 0.5 300 
Grass Steep 
Slope Valley GSSV 0.1 0 8 540 0.5 300 
Grass Gentle 
Slope Valley GGSV 0.1 0 5 542 0.5 300 

Wetland W 0.15 0 0 542 5 300 



APPENDIX F – SCHMATICS FOR SNOW HYDROLOGY MODEL AT CREIGHTON TRIBUTARY 
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APPENDIX G – SCHMATICS FOR SNOW HYDROLOGY MODEL AT WETLAND 109 
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