The Water Cycle in a Changing Climate: High-Resolution Simulations

Nikolina Ban¹, Sven Kotlarski², David Leutwyler¹, Daniel Lüthi¹ and Christoph Schär¹

¹Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland ²Federal Office of Meteorology and Climatology MeteoSwiss, Zürich, Switzerland

INARCH Workshop Oct 17-19, 2016

Introduction •00	EURO-CORDEX	CRM 000000000000	crCLIM 000	Summary

Hydrological Impacts of Extreme Precipitation

Flash floods

Saanen (Switzerland), Jul 2010

Landslides

Graubünden (Switzerland), Aug 2014

Galtür (Austria), Feb 1999

Nikolina Ban :

Introduction ○●○	EURO-CORDEX	CRM 000000000000	crCLIM 000	Summary
Numerical model	ing of climate			

- RCM are used in CORDEX (Coordinated Regional Downscaling Experiment) at 0.11° and 0.44° horizontal resolution (12 and 50km)
 -see e.g.: Giorgi et al., 2006; Jones et al., 2011; Jacob et al., 2013; Kotlarski et al., 2014; Giorgi et al., 2016; Kotlarski et al., In prep.
- CRM: Convection-resolving model enables explicit simulation of convection (e.g., thunderstorms, rain showers)

-see e.g.: Grell et al., 2000; Hohenegger et al., 2008; Knote et al., 2010; Kendon et al., 2012, 2014, 2016; Rasmussen et al., 2011, 2014; Ban et al., 2014, 2015; Prein et al., 2015, Leutwyler et al., 2016

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	000000000000	000	
Outline				

EURO-CORDEX: Analysis of Snow Cover

Introduction 000	EURO-CORDEX	CRM 000000000000	crCLIM 000	Summary
Outline				

EURO-CORDEX: Analysis of Snow Cover

Convection-Resolving Climate Simulations: Evaluation & Climate Change Projections

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
00●	00000	000000000000	000	
Outline				

EURO-CORDEX: Analysis of Snow Cover

Convection-Resolving Climate Simulations: Evaluation & Climate Change Projections

European-Scale Convection-Resolving Climate Simulations (crCLIM)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

EURO-CORDEX

Analysis of Snow Cover

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	0 000	000000000000	000	

EURO-CORDEX Snow Cover Evaluation

Mean Annual Cycle of Total Snow Covered Area in Europe ERA-Interim driven EUR-11 simulations versus NSIDC satellite data (1989-2008)

• Mean snow-covered area is mostly underestimated

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	0000	00000000000	000	

EURO-CORDEX Snow Cover Evaluation

Bias in Number of Snow-Covered Days per year

ERA-Interim driven EUR-11 simulations versus NSIDC satellite data (1989-2008)

• Underestimation of number of snow days by most experiments over most parts of Europe

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	0000	00000000000	000	

EURO-CORDEX Snow Cover Projections

Change in the Mean November-April Snow Water Equivalent GCM driven EUR-11 simulations, RCP8.5 (1971-2000 to 2071-2100)

· Large decrease in mean snow water equivalent in all areas

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

EURO-CORDEX Snowfall Projections Alps

Change in the Mean September-May Snowfall

GCM driven EUR-11 simulations, RCP8.5 (1971-2000 to 2071-2100)

(Frei et al., In preparation)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	000000000000	000	

EURO-CORDEX Temperature Projections Alps

Change in Mean MAM and JJA 2m Temperature (vertical profile) GCM driven EUR-11 simulations, RCP4.5 & RCP8.5 (1981-2010 to 2070-2099)

• Amplification of warming by decreasing snow cover (snow-albedo feedback)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	000000000000	000	

Convection-Resolving Climate Simulations

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	••••••	000	
Setup				

Two-step one-way nesting: $BC \Rightarrow CPM12 \Rightarrow CRM2$

- CPM12 and CRM2 use COSMO-CLM v4.14
- Boundary Conditions: ERA-Interim reanalysis & MPI-ESM-LR (RCP8.5)
- CPM12: Convection–Parameterizing Model
 - △x,y=12 km (0.11°)
 - XxYxZ=260x228x60
 - Parametrization of convection: Tiedtke
- CRM2: Convection–Resolving Model
 - △x,y=2.2 km (0.02°)
 - XxYxZ=500x500x60
 - Deep convection explicitly resolved
 - Shallow convection: Tiedtke

•The setup is similar to MeteoSwiss for NWP •The numerical simulations have been performed on the CRAY XT5 and CRAY XE6 at the Swiss National Supercomputing Center (CSCS)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

Experiments: CRM Simulations for the Greater Alpine Region

• Wallclock time: 1×10y CRM2 \rightarrow ≈4-8months

[IPCC AR5]

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

Convection-Resolving Climate Simulations: Evaluation

• ERA-Interim driven simulations (1998-2007)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

Diurnal Cycle of Summer Precipitation

[Analysis for 62 Swiss stations]

CRM2 realistically simulates amplitude and phase of the diurnal cycle

(Ban et al., 2015 GRL)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

Evaluation of Precipitation - Average across 62 Swiss Stations

 \rightarrow CRM2 improves the simulation of precipitation in the winter (DJF) and summer (JJA) season

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

Convection-Resolving Climate Simulations: Climate Change Projections

• based on GCM-driven scenarios for 2081-2090 (RCP8.5) versus 1991-2000

Projections of Mean and Heavy Precipitation

Summer (JJA):

- Increase in heavy precipitation despite an overall drying
- Decrease in large-scale, and increase in convective precipitation (Giorgi et al., 2016, Nature Geoscience)

Winter (DJF):

CRM2 and CPM12 show similar changes

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

Relative Changes of Precipitation on Daily Timescales

[Average across the CRM2 domain]

Close agreement of CRM2 and CPM12

(Ban et al., 2015 GRL)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

Relative Changes of Precipitation on Hourly Timescales

[Average across the CRM2 domain]

CRM2 exhibits smaller changes than CPM12

(Ban et al., 2015 GRL)

Link Between Temperature Change and Extreme Precipitation Change

Moistening of the atmosphere is determined by Clausius-Clapeyron relation:

 Do heavy hourly precipitation events increase at adiabatic (~6-7 %/K) or super-adiabatic (~14 %/K) rate?

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	000000000000000000000000000000000000000	000	

Link Between Temperature Change and Extreme Daily Precipitation Change

 \Rightarrow Extreme daily precipitation asymptotically intensify with the Clausius-Clapeyron relation

(Ban et al., 2015)

the Clausius-Clapeyron relation \Rightarrow Winter (DJF): Changes in extreme hourly precipitation exceeds the Clausius-Clapeyron rate

Although...

(Ban et al., 2015)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

Link Between Temperature Change and Extreme Hourly Precipitation Change

Scaling of Extreme Hourly Precipitation Events

...CRM2 exhibits super-adiabatic scaling for extreme warm-season precipitation, and adiabatic for cold-season precipitation in both Control and Scenario simulations

 \Rightarrow Indicates that scaling of extreme precipitation with temperature in present-day climate can not be extrapolated into the future

(Ban et al., 2015)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	000000000000	•••	

European-Scale Convection-Resolving Climate Simulations (crCLIM)

http://www.c2sm.ethz.ch/research/crCLIM.html

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	00000000000	000	

European-Scale Convection-Resolving Climate Simulations (crCLIM)

- Two-step one-way nesting: ERA-Interim \Rightarrow 12km \Rightarrow 2.2km
- X×Y×Z=1536×1536×60 grid points
- GPU version of COSMO (Fuhrer et al., 2014)
 - Dynamical core rewritten in C++
 - Parameterizations use OpenACC
 - Runs on Piz Daint (Cray XC30, CSCS)
 - Used for operational NWP at MeteoSwiss (Δx=1 km)
- Wall-clock time: 1 year \Rightarrow 5 days
- 1st 10-year long simulation: 1999-2008
 ⇒ Completed

Nikolina Ban : The Water Cycle in a Changing Climate

0.5

(Leutwyler et al., 2016 GMD)

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	000000000000	○○●	

Winter Storm Kyrill

Nikolina Ban : The Water Cycle in a Changing Climate

Introduction	EURO-CORDEX	CRM	crCLIM	Summary
000	00000	000000000000	○○●	

Winter Storm Kyrill

Jan 18, 2007, 18 UTC $\Delta x = 12 \text{ km}$

(Leutwyler et al., 2016 GMD)

Nikolina Ban : The Water Cycle in a Changing Climate

000	00000	00000000000	000	Summary	
Winter Ctown K will					

Winter Storm Kyrill

Nikolina Ban : The Water Cycle in a Changing Climate

Introduction 000	EURO-CORDEX	CRM 000000000000	crCLIM 000	Summary
Summary				

EURO-CORDEX

- Most experiments underestimate the snow cover
- Decrease of snow cover amplifies the warming at higher elevations (snow-albedo feedback)

Convection-Resolving Climate Simulations

- CRM2 improves the simulation of precipitation in all seasons and on all time scales (especially on the sub-daily)
- Close agreement of CRM2 and CPM12 regarding the changes in daily precipitation; for hourly extremes CRM2 exhibits smaller changes than CPM12
- Changes in extreme JJA precipitation qualitatively scale with the Clausius-Clapeyron rate. In DJF the change exceeds the Clausius-Clapeyron rate for short-term extreme precipitation.

European-Scale Convection-Resolving Climate Simulations (crCLIM)

 COSMO-GPU prototype enables climate simulations on large computational domains with a reasonable time-to-solution, and has a great potential for future climate studies

Thank you for your attention!