Water Management Implications of CRHM: Mountains to Prairies to Arctic

John Pomeroy and colleagues Centre for Hydrology, University of Saskatchewan, Saskatoon

Problem

Rocky Mountain Water Resources are Declining WHY?

Flows in Late Summer

Late summer flows large and dropping rapidly

Early Spring Flow Increasing

Winter flows small and rising somewhat

Marmot Creek Research Basin

- 1450-2886 m.a.s.l. Kananaskis Valley, Bow River
- Alpine
- Subalpine
- Montane
- Clearcut
- Meadow
- 900 mm precipitation
- 70% snowfall
- ~50% runoff

Temperature Trends at High Elevation in Marmot Creek, Rocky Mountains

Winters are warmer by 3 to 4 °C since 1962

Harder & Pomeroy

Upper Clearing

- 1844 m
- Small forest clearing
- Sheltered by fir and spruce forest

Fisera Ridge, Mt Allan Cirque

- 2318 m
- Alpine Ridge
- Windblown

CRHM for Alpine Terrain

Alpine Ridge Snow Modelling

rms error = 0.134 m, mean error = 0.074 m

Blowing snow flow parameterisation

- Dominant windflow: north to south
- Flow over ridgetop and into forest

Landscape Units: 2008-2009

Simulation Summary: 2008/2009

Winter Warming Impact on Alpine Ridge Snow Accumulation

Impact of Warming on Blowing Snow Fluxes

Impact of Winter Warming on Maximum Snow Accumulation

Impact of Winter Warming on Snowmelt Rate

Impact of Winter Warming on Spring Snowmelt Duration

Impact of Winter Warming on Date of Snowpack Depletion

CRHM for Mountain Forests

Forest Snow Modelling

Winter Warming Impact on Mountain Forest Snow Regime

Change in Melt with Temperature

Change in Snowfall with Temperature

Change in Sublimation with Temperature

Change in Maximum Accumulation with Temperature

Water Management Implications

- These results show that intact mountain forests have a mitigating effect on some aspects of climate variability and that wind-swept open environments are highly sensitive to climate warming.
- Full consideration of blowing and intercepted snow processes along with energy balance snowmelt calculations must be given for credible climate change impact studies of mountain snow hydrology.

Effects of Forest Cover Change

- Evergreen forest canopy is associated with two primary hydrological effects
 - Snow and rainfall interception and subsequent sublimation and evaporation resulting in reduced sub-canopy snowfall or rainfall,
 - Alteration of sub-canopy radiation and turbulent transfer affecting the snowmelt rate.

Forest Sky View for Maximum Melt Energy from Net Radiation

There is no simple relationship between forest density and melt rate. Influence of slope, aspect, solar elevation, weather and albedo are overwhelming.

Ellis and Pomeroy, in preparation

CRHM Forest

Observed and Modelled Forest Energetics – Marmot Creek

CRHM Forest Tests – Colorado, Switzerland, Alberta

Slope and Forest Density Effect on Net Radiation for Snowmelt - Rockies

Net radiation = solar + thermal radiation

Ellis & Pomeroy, in preparation

Water Management Implications

- Forest clearing increases snow accumulation
- Forest clearing accelerates snowmelt rates on south facing slopes and level sites, BUT
- Forest clearing reduces snowmelt rates on north facing slopes

Prairie Runoff Generation

Snow Redistribution to Channels

Dry non-contributing areas to runoff

Water Storage in Wetlands

PRAIRIE HYDROLOGY – Limited Contributing Areas for Streamflow

Non-contributing areas for streamflow extensive in Canadian Prairies

Localized hydrology affected by poor drainage, storage in small depressions

Modelling Prairie Hydrology

- Need a physical basis to calculate the effects of changing climate, land use, wetland drainage
- Need to incorporate key prairie hydrology processes: snow redistribution, frozen soils, spring runoff, wetland fill and spill, non-contributing areas
- Frustration that hydrological models developed elsewhere do not have these features and fail in this environment
- Streamflow calibration does not provide information on basin non-contributing areas and is not suitable for change analysis

Smith Creek Hydrology Study

• Problem: Inability to reliably model the basins of the Upper Assiniboine River and other prairie basins where variable contributing area, wetlands, nonsaturated evapotranspiration, frozen soils, snow redistribution and snowmelt play a major role in hydrology.

• Objectives

- Develop a Prairie Hydrological Model computer program that can simulate the response of streams, wetlands, and soil moisture to weather inputs for various basin types.
- Evaluate the model performance in Smith Creek by comparing to observations of streamflow, wetland extent, and snowpack.
- Use the Prairie Hydrological Model to estimate the sensitivity of streamflow, wetland water storage, and soil moisture to changes in drainage and land use.

Smith Creek – extreme interannual and seasonal variability

Smith Creek, Saskatchewan, ~400 km² basin area

Streamflow over Time

Peak Flow over Time

Maximum Daily Discharge of Smith Creek during 1975-2006

Changing Climate?

Drainage of Wetlands?

Drainage of Wetlands?

Modelling Approach

CRHM – Prairie Hydrological Model Configuration

HRU Configuration for Smith Creek

HRUs "grouped" into "representative basins", RBs, that are repeated for sub-basins but with individual parameter sets. Routing between RBs permits large scale process estimation.

Small scale Processes

Large Scale Processes

Routing

Amongst HRU in a Representative Basin

Amongst Representative Basins

Instrumentation of Smith Creek

Completed Summer 2007

Main Hydrometeorological Station

Temperature, humidity, wind speed, shortwave radiation, longwave radiation, soil moisture, soil temperature, soil heat flux, snow depth, rainfall, snowfall

Snow and Wetland Surveys

Smith Creek Basin Characteristics

Spot Image

Remote Sensing Supervised Classification

SPOT5 Field tests of vegetation classification

vegetation used to define HRU area, HRU location & vegetation parameters

LiDAR-Derived DEM Drainage Network

LiDAR DEM to Calculate **Depression Storage using** pond volume-depth-area relationship

30

30

30	30	30	30	3
30	30	30	30	23
30	30	30	30	3
30	30	30	30	3

1	Su	rfac	e T	2
30	30	30	30	-
30	30	28	28	3

30 30 30

30 35 30

Surface T1

Volu

ttribute table:			(note: cellsize of input is 10				
	Rowid	VALUE*	COUNT	VOLUME	AREA		
	0	1	13	0	1300		
	1	2	1	-500	100		
	2	3	2	400	200		

ıme field:				Area field:			
	0	0	0	1300	1300	1300	1300
	0	-500	0	1300	1300	100	1300
	400	400	0	1300	200	200	1300
	0	0	0	1300	1300	1300	1300

1	1	1	1
1	1	2	1
1	3	3	1
1	1	1	1

Outras

Net Loss

Derivation of Wetland Depressions

Figure 3. (a) Original 10-m LiDAR DEM, (b) filled depressionless 10-m LiDAR DEM, and (c) "cut/fill" output for Smith Creek basin.

CRHM Tests Smith Creek – No Calibration

Runoff Prediction 2008

Smith Creek Spring Discharge near Marchwell

	MB	RMSD (m ³ /s	Peak Dischar	ge (m ³ /s)
Non-LiDAR Simulation	-0.07	0.10	4.61	
LiDAR-based Simulation	-0.39	0.12	4.17	
Observation			4.65	

Runoff Prediction 2009

Smith Creek Spring Discharge near Marchwell

	MB	RMSD (m ³	Peak Discharge (m ³	³ /s)
Non-LiDAR Simulation	-0.21	0.28	7.83	
LiDAR-based Simulation	-0.57	0.31	5.37	
Observation			6.22	

Sensitivity Analysis: Change in Spring Discharge

Sensitivity of Spring Discharge Volume to Land use and Drainage

Long-term Impact of Land Use and Drainage Change

Wetland Change in Low Discharge Volume Year

Scenarios of Smith Creek Spring Discharge near Marchwell

2000 Drought: Lowest Discharge Volume on Record

Wetland Change in High Discharge Volume Year

Scenarios of Smith Creek Spring Discharge near Marchwell

1995 Flood: Record High Discharge Volume

Discussion on Scenarios

- Changes in wetland extent often are accompanied by changes to land use.
- Increasing forest cover decreases discharge volume.
- Increasing agricultural land increases discharge volume.
- Increasing wetland area reduces discharge volume, whilst decreasing wetland area results in an increase.
- The changes to discharge volume due to decreasing wetland area are similar for almost all discharge volumes, but changes due to increasing wetland area tend to increase with discharge volume.
- In dry conditions, when storage is small, wetland drainage increases discharge volume, whilst wetland restoration has little impact.
- In flooding conditions, when storage is filled, neither wetland drainage nor restoration has an effect on the hydrograph.

Conclusions

- Consideration of snow, frozen soil and surface storage processes are essential to calculating spring runoff in the Prairies.
- Depressional storage is exceedingly difficult to calculate in this flat, poorly drained environment LiDAR permits estimation of depressional and wetland storage volumes.
- It is possible to model prairie snowpack, soil moisture and streamflow without calibration using physically based simulations that aggregate landscape scale hydrological cycle calculations, **if** high resolution information is available on catchment characteristics.
- There is moderate sensitivity of streamflow volumes to changes in agricultural and forest land use.
- There is strong sensitivity of streamflow volumes to wetland drainage and restoration.