Thawing of Permafrost Peatland and Hydrological Implications

Masaki Hayashi¹, Bill Quinton², Alastair McClymont¹, Larry Bentley¹, Brendan Christensen¹ ¹Geoscience, University of Calgary ²Geography & Env. Studies, Wilfrid Laurier University

Prediction of Permafrost Thaw, 1990-2090

pink: complete thawing

Model Assumptions

- Vertical energy transfer
- Large (~50 km) grids
- No lateral flow of water and energy

Reality (Scotty Creek)

Annual Total Basin Runoff near Ft. Simpson Four Rivers (150-1,900 km²), Similar Landcovers

flat bog

peat plateau

channel fen

Peat Plateaus Have Permafrost Cores

Att MININ

Water flows over frozen peat.

permafrost

Differential Thawing by Conduction

Hayashi et al. (2007, Hydrol. Proces. 21: 2610-2622)

2D Survey of Frost Table (FT) June 12, 2006

- FT measured using FT probe on 0.25 m grids.
- Subsurface flow simulation: 15 mm of rain added. Boussinesq equation is numerically solved.
 Wright *et al.* (2009, *Water Resour. Res.* 45: W05414)

Electrical Resistivity Imaging (ERI)

ERI Line 1: Peat Plateau Transect

ERI Line 2: Cross-Bog Transect

Conceptual Model of Permafrost Thaw

- Thinning of canopy.
 → Increase in radiation energy input.
- 2. Local thawing.
 → Water-energy feedback causes further thawing.
- Wet condition prevents trees from growing back.
 → New bog forms.
 - unsaturated, thawed peat
 saturated, thawed peat
 saturated, frozen peat

Delineation of Peat Plateau on Aerial Images

Quinton et al. (2011, Hydrol. Proces., 25: 152)

Delineation of Peat Plateau on Aerial Images

Peat Plateau Area 1977: 53% 2008: 43%

Quinton et al. (2011, Hydrol. Proces., 25: 152)

Changes Evident on the Ground

Aug. 2002

July 2010

Modelling Peat Plateau Runoff

Hydraulically equivalent plateau

Drainage of groundwater controlled by: - Radius

- Radius
- Gradient
- K_{sat} distribution
- Frost-table depth

Similar to MESH, but the moving FT is the challenge.

Coupled Permafrost-Hydrology Model for Circular Peat Plateau vertical transfer

Northern Ecosystem Soil Temperature (NEST) model Zhang et al. (2008)

lateral drainage

Simple Fill and Spill Hydrology (SFASH) model Wright et al. (2009)

NEST-SFASH Preliminary Results

Challenges and the Way Forward

- 1. Storage and flow of runoff water in the fen-bog network \rightarrow Basin-scale hydrological model.
- 2. Incorporate lateral thawing of permafrost in longterm model simulation (e.g. 50 years).
- 3. Ecology-hydrology feedback processes.

IP3 Legacy

- **1. Scotty Creek research basin**
- 2. Close collaboration with the local First Nation.
- 3. WLU-Northwest Territories Partnership for Research and Training (2010-2020, \$10M project).

Acknowledgements

People Nicole Wright, Laura Chasmer, Chris Hopkinson, Tyler Veness, Rob Schincariol, and many others

Funding

IP3 Network International Polar Year Natural Sciences and Engineering Research Council Canada Research Chair Program Environment Canada Science Horizons Program

Logistical Support Water Survey of Canada Environment Canada (NWRI) Liidlii Kue First Nations