

Summary of EC Prediction System

A. Pietroniro

A/Director Water Survey Hydrometeorology and Arctic Lab, Environment Canada, NHRC

Monitoring, Prediction and Forecasting

- Hydrological processes are highly variable in space and time at all scales from centimeters to continents.
 - Data collection over such a range is difficult and expensive
 - Hydrological prediction fills the gap
 - Based on simple and homogenous models of nature
 - Range from deterministic to statistical/stochastic methods
 - Results are fair to good in well behaved basins
 - Scaling, pathways, dynamics, energy balance ... still to be resolved
- Significant advances are still made through observations
 - Environment Canada Schisms between data collection and hydrological science
 - In the excitement of "glamorous science" the scientific community often lets data collection programs erode
 - All models are wrong some are useful

nnement Environment la Canada

supercomputer (2003): 800 processors (IBM Power4)

Improved Soil Water Balance

MESH: A MEC surface/hydrology configuration designed for regional hydrological modeling

- The tile connector (1D, scalable) redistributes mass and energy between tiles in a grid cell
 - e.g. snow drift
- The grid connector (2D) is responsible for routing runoff
 - can still be parallelized by grouping grid cells by subwatershed

Hydrological Prediction Framework

Community Model

- MEC is available for download:
 - As the current version of MEC is a subset of the GEM atmospheric model driver, go to: http://collaboration.cmc.ec.gc.ca/science/rpn.com/
 - Then Click on « GEM »
 - Complete documentation for installing and running MEC available online

Precipitation analysis (CaPA)

- Combine different sources of information on precipitation into a single, near real-time analysis
 - Analysis of 6h accumulation of precipitation, covering all of North America on a 15km grid
 - Optimal interpolation technique to obtain our best estimate of precipitation

Land data assimilation (CaLDAS)

The Canadian EPS

Starting January 2006:

- 15 day runs twice per day
- 10 perturbed runs from each model
- Surface scheme:
 - 10 members with F-R
 - 10 members with ISBA

Collaborative Studies

- Research MESH testing
 - Canada DRI Drought Research Initiative
 - IP3 Process parameterization and Predictions -
 - -IPY
 - Great Lakes Ensemble Modelling
 - Climate Change Assessments SSRB

Map created by Jackie Bronson

Glacier contribution to flow – IP3

The HEPEX Canada EPS

Multi-model ensemble (SEF + GEM)

- T149 for SEF, 1.2° for GEM
- A different parameterization is used for each member

Since June 2001:

- 10 day runs once a day
- 8 perturbed runs from each model
- Surface scheme:
 - force-restore

Starting January 2006:

- 15 day runs twice per day
- 10 perturbed runs from each model
- Surface scheme:
 - 10 members with F-R
 - 10 members with ISBA

File Edit View Tools HYDAT Run Window Help

_ 7 >

Forecasting

Two nested modelling domains

Stand alone MESH

- MESH model physics (CLASS LSS)
 - with added routing based on Watroute
- Forcing with met tower data
 - Temp, precip, station pressure, specific humidty, wind, lw and sw radiation
- May 15 to November, 2007, half hourly

15-May-07 15-Jun-07 15-Jul-07 15-Aug-07 15-Sep-07 15-Oct-07

Summary and future considerations

- Stand alone MESH demonstrates that it is possible to reasonably replicate some water availability parameters.
- CaPa show some benefits to precipitation re-analysis. Will be operation this year.
- A first version of CalDAS has been tested with ISBA.
 - Future versions will
 - Assimilate soil moisture directly (if avaialbel)
 - Will be based on CLASS
- MEC system is moving towards the same internal representation of the behavior of the standalone MESH and has the added benefit of the use of land surface data assimilation
- The goal is to provide calibration and verification from MEC and MESH and evaluate the system in an operation mode.
 - Further evaluation over the next 2 years.
 - Parameterizations and other changes to stand-alone MESH will be incorporated into the operational model.
- 10 Day forecasts
 - MEC/MESH can already provide 10 forecasts using deterministic and ensembles forecasts
 - All water vaiability indicators could be forecasted
 - Could be very useful for irrigation scheduling
- Seasonal Forecast
 - MEC/MESH will be incorporated into the Canadian Forecasting system
- Climate change
 - Force MESH standalone with RCM output
 - Run MEC in Climate Mode

Environnement Environment Canada Canada

