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Processes

Multi-scale observations of 
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Anticipated Results: 
ProcessesProcesses

New soil physics parameters 
for organic and frozen soils

Control of lateral flow establis
environments

Improved turbulent transfer re
glacier ice in complex terraing p

Improved short- and long-wav
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shed for various cold regions 
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ParameterisationParameterisation

Scaling of 
hydrological y g
processes

MinimizeMinimize 
model complexity 
while reproducingwhile reproducing 
the essential 
behaviour of thebehaviour of the 
system



Anticipated Results:Anticipated Results: 
Parameterisation

Runoff and streamflow, includ
‘fill and spill’ method

Advection, evaporation, and i
on small lakes

Blowing snow redistribution a
radiation changes in snowradiation changes in snow

Upscaled radiation and turbul
covered area depletioncovered area depletion
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Prediction

Water resources (storage, 
discharge snow cover soildischarge, snow cover, soil 
moisture), atmosphere-ground 
interaction (evaporation) andinteraction (evaporation), and 
weather and climate



Anticipated Results:Anticipated Results: 
– Prediction
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Improved climate predictionImproved climate prediction
land surface scheme physics a

ns –s

nd mountain basinsnd mountain basins
auged basins – streamflow 
n of model parameters fromn of model parameters from 
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IP3 Final Outputs
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Users’AdvisoryUsers’ Advisory 
Committee

Public and private:Public and private: 
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Recent Activities
Field work began in spring in all

basins, new field equipment installedb s s, ew e d equ p e s ed
Model development:

CLASS 3.3 finalizedCLASS 3.3 finalized
CRHM – initialized for most bas

participated in SnowMIP2, ma
MEC/MESH – initialized for sev

GEM Modeller, several students an
LiDAR surveys of all 8 basins comp
Lake O’Hara and Peyto Glacier – coy
Scotty Creek (NWT) – parameterisi
Wolf Creek (Yukon) – tests of freez( )
Marmot Creek (Rockies) – blowing

sins,
any new parameterisations added
veral basins, training workshop

nd postdocs started summer 2007
pleted August 2007
oming up!g p
ing wetland frost table depth, runoff

ze/thaw soil simulation algorithmsg
g snow model, etc.
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HYPOTHESISHYPOTHESIS:

Frost-table depth isFrost table depth is 
controlled by the soil 
moisture distributionmoisture distribution.
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Concl

saturated peatsaturated peat

usions

Melt water converges to depressions by 
subsurface flow.

Wet peat has high thermal conductivity →Wet peat has high thermal conductivity →
enhances heat conduction.

Depression continue to receive subsurface 
runoff, frost table gets deeper.



Parameterization Object
(Sean Carey Ca

Evaluate the performance of commonly use
algorithms in permafrost regions:

(Sean Carey, Ca

algorithms in permafrost regions:
Freeze-Thaw algorithm to test Soil p
for mineral and organic soils

Tested algorithms are Semi-empirical (1), A
Numerical (3)( )

Selected Results:

1.  Selection of parameterisation more impo
soils than mineral soils
2.  Semi-empirical algorithms not recommen
spatial and temporal variations in the param
3. Numerical algorithms performed best – t3.  Numerical algorithms performed best t
freezing and thawing most precisely, but req
temporal resolution and assimilation of soil m

tives: Thermal Modelling
rleton University)

ed simulation 

rleton University)

S il?parameterizations Soil?

Analytical (2), and 

ortant for organic 

nded (due to large 
meter values)

raced groundraced ground 
quire very high 
moisture data



Process Objective: Explore dow
hydrochemistry to elucidate ch
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Snow Processes
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Blowing Snow: Tra
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Dual Scale

~250,000 grid cells

 Approach 

7 HRU



Comparison of Moddel to Observations



Linear simulation of westerly 

Windspeed

3 km3 km

Essery and Pomeroy, in preparation
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Simulation of Hills

3 km3 km

Distributed Blow

slope Snowdriftp

wing Snow Model



Di t ib t dDistributed 
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Solar radiation to snow b
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Complex Terr

Solution: landscape units

20o slopes20o slopes
South Face

rain Snowmelt

North FaceValley Bottom



Modelling
Aggregated vs

Distributed models can capture snowm
synchronicity effectssynchronicity effects

Distributed models better reproduce S
and Streamflow in complex terrain tha
aggregated models

g Approach
s. Distributed

melt 

nowmelt 
n 



Upcoming MeetingsUpcoming Meetings

IP3 2nd Workshop to be held at
C ld R i R h CCold Regions Research Centre, 
Wilfrid Laurier University, 
Waterloo ON 8-10 November 2Waterloo, ON, 8 10 November 2
Other meetings to be planned: 

Themes 2 and 3 Workshop (PaThemes 2 and 3 Workshop (Pa
CRHM training Workshop (po
U ' Ad i W k hUsers' Advisory Workshop

20072007

arameterisation/Prediction)arameterisation/Prediction)
ossibly January)
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