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Abstract:

Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content
of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical
soil column subject to 1/3 atm. of pressure head. While this quantification is sufficient in some cases, the definition is not
consistent with the use of bulk field capacity in calculations of lateral drainage from hillslopes, as required by some surface soil
parameterizations, nor does it address additional complications arising from differences in soil texture or sample size. Here,
a simple alternative expression for bulk field capacity in a sloping or vertical soil is derived directly from Richards equation
with the use of the Brooks-Corey characteristics. It is demonstrated that this expression is consistent with data acquired from
vertical soil columns, but may be extended to additional situations commonly found in surface water models and land surface
schemes. The calculation of bulk field capacity requires only the Brooks-Corey pore size distribution index, soil air-entry
pressure, and hillslope length and slope, and may be considered a physically based alternative to pedotransfer function or
lookup table approaches. Copyright  2010 John Wiley & Sons Ltd and Crown in the right of Canada.
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INTRODUCTION

Field capacity is loosely defined as the amount of water
remaining in a drying soil after excess moisture has
drained from its pores and the rate of drainage from the
soil is negligible (Veihmeyer and Hendrickson, 1931).
It is used as an input to a variety of hydrological
process submodels (e.g. those for soil evaporation (Dyck,
1983), bypass flow (Federer, 2002), infiltration, etc.). It
is also used for calculation of common metrics in soil
physics, for example, available water capacity (Salter
and Haworth, 1961). Often treated as a constant for a
given soil, field capacity may be measured as a point
value in the field by monitoring the soil moisture in a
covered soil initially at saturation until the flow rate,
approximately reaches an asymptotic value, typically 2 or
3 days after a wetting event. Unfortunately, this definition
is insufficient for regional watershed models, where field
data are typically not available, and bulk or representative
values of field capacity may be needed. Quantification is
confounded by the fact that field capacity is dependent
upon the soil characteristics, wetting history, suction
pressure applied to the element and the means of defining
a ‘negligible’ drainage rate.

The classical quantitative definition of field capacity
relies upon the empirically derived suction of �0Ð33
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bar (340 cm) of pressure head, as determined via cor-
relation with observations at the point scale (Richards
and Weaver, 1944). While this definition has been main-
tained for many lookup-table based hydrological mod-
els, other researchers have since used alternative forms
chosen to reduce the number of specified parameters in
distributed hydrological models (Nachabe, 1998; Federer,
2002; Verseghy, 2009). These alternate forms require the
use of a specified limiting flux (Nachabe, 1998), speci-
fied limiting conductivity (Verseghy, 2009), or specified
combination of depth, gravity potential gradient and time
period (Federer, 2002) that corresponds to the negligi-
ble drainage rate. The primary limitation of all these
methods is that they rely upon either empirical values
for the limiting suction head, flux, gradient, or con-
ductivity and therefore introduce additional parameters
to typically over-parameterized hydrological models. In
addition, these expressions are specific to field capacity
due solely to vertical drainage. Lastly, a number of pedo-
transfer functions (Gupta and Larson, 1979; Bell and van
Keulen, 1996) have been derived for field capacity. These
pedotransfer functions, while useful, tend to be location-
specific and are in any case developed from the 1/3 bar
approximation, and therefore suffer from the same ques-
tions about the physical basis of their applicability. They,
too, cannot be extended to the hillslope case.

Here, an alternative physically based expression for
field capacity is defined that is consistent with field mea-
surements and existing pedotransfer functions, and may
further be extended to the lateral field capacity concept
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for use in land surface schemes that characterize a water-
shed as a set of sloping soil units (Pietroniro et al., 2007).
This expression, based on an approximate physical solu-
tion to the one-dimensional Richards equation, includes
only standard measurable soil parameters, thus making it
appealing for improving the parsimony of a given surface
water model.

SOLUTION

The sloping soil horizon is assumed to be homogeneous
and subject only to lateral drainage through a downhill
seepage face, as depicted in Figure 1a. Flow is assumed
to occur only in the downhill direction, which leads to
the following form of the 1D Richards equation:
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where  D ∂z
∂X D �˛/p1 C ˛2, and ˛ is the slope of

the soil horizon. Note that  D 1 for vertical infiltration
into flat ground (as in Figure 1b) and that residual water
content is assumed to be negligible.

The soil characteristics are assumed to be well-
characterized by the Brooks and Corey (1964) model for
the interrelationship between saturation, pressure head,
and unsaturated hydraulic conductivity, that is,

 D  aS
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where  [L] is the matric, or suction, pressure,  a [L]
is the air-entry pressure, S [�] is the saturation of the
soil and b is an empirically defined fitting parameter [�],
assumed to be a constant for the soil (b is the inverse of
the pore size distribution index). Also,

k D ksS
c �3�

where k [L/T] is the hydraulic conductivity, ks [L/T]
is the saturated hydraulic conductivity, and c is the
pore disconnectivity index approximated by 3bC 2. The
Brooks–Corey exponents are readily estimated from soil
textures using empirical-regression relationships (Rawls
et al., 1982; Saxton et al., 1986) or a lookup table
approach.

The approach taken here is to divide the problem
domain into a downhill zone where gravity effects are

dominant (the gradient of soil suction is negligible)
and an uphill zone where suction effects are dominant
(the total head gradient is negligible). The two zones
are separated by a moving front, Xf�t� [L]. Bulk field
capacity is then defined as the bulk saturation when
the moving front reaches the seepage face. Because
the head gradient (and therefore the flux) behind this
front is effectively zero, this definition is a means
of mathematically formalizing the negligible drainage
condition.

First, the problem is solved for the entire domain using
the assumption that the variation of matrix potential is

small compared with the slope (i.e. ∂ ∂X − ∂z
∂X ). With a

negligible suction gradient, Equation (1) simplifies to:
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Substituting the Brooks–Corey relationship
(Equation (3)),
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Using the implicit function theorem, the problem may
be reformulated in terms of the horizontal velocity and
solved for S�X, t�,
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where X0 [L] is an arbitrary constant. The choice of
X0 D 0 corresponds to an initial condition of S�X, 0� ½
1, that is, the top of the hillslope has a non-zero
(actually infinite) saturation, thus the initial condition
of a fully saturated domain is met. It may be verified
that the parameter ˇ is actually the celerity of the
saturated/unsaturated interface. Note that the domain of
the mathematical solution to this equation is limited to
saturations less than 1, so in practice the kinematic wave
solution is re-expressed as:
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Figure 1. The conceptual model of a sloping soil horizon (a) initially at saturation and allowed to drain to field capacity. Vertical infiltration into flat
ground (b) may be simulated by taking the limit as ˛ goes to infinity
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where the C superscript is used to distinguish the gravity-
dominated (downhill) portion of the solution from the
uphill portion (� superscripts). Note that this is an exact
solution to the simplified Richards equation, provided the
suction head gradient is small compared with the slope
of the hillside.

For the uphill zone, the total head gradient is assumed
negligible (i.e. the flow rate in the uphill zone is nearly
zero), providing the following linear solution for suction
head:

 � ³  f ��X� Xf� �9�

where  f [L] is the suction head at the interface
between solutions (i.e. at Xf). At the zonal intersection
(Xf�t�), continuity in both saturation and the derivative of
saturation is assumed. Note that through the relationship
of Equation (2), continuity of suction and its derivative
are implicitly preserved. Also, although the gravity-
dominated solution is based upon the assumption of
a negligible suction derivative, because the solution is
obtained purely in terms of saturation, this derivative is
actually non-zero in the solution. This provides a means
to solve for  f (the other unknown, Xf, is not explicitly
required for this analysis, though may also be obtained).
Applying continuity of suction gradient:
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Substituting this result into Equation (9), the follow-
ing expression for matric potential uphill of the zonal
intersection is obtained:
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This solution (the combination of Equations (11)
and (8)) suffers from a few drawbacks with regard to
general application, most notably that it does not meet
global mass balance in the uphill portion of the solu-
tion owing to the relaxed assumptions about the suction
gradient. Although the solution is not recommended for
calculation of point saturations, the suction gradient does
in fact approach the appropriate steady-state solution.

By integrating the solution along the hillslope, a useful
operational definition of bulk field capacity is obtained,
one which is consistent with existing literature and field
measurements, as is shown in the next section. The above
expression is integrated from X D 0 to Xf D L

p
1 C ˛2

(the length of the hillslope) to obtain the limiting bulk
saturation at which the total head gradient is everywhere

negligible (i.e. the point in time at which drainage
ceases):
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where a D �b� 1�/b. This general operational expression
for bulk field capacity, the primary contribution of this
article, is examined in the next section.

The approach outlined above suggests another, poten-
tially simpler, approach for defining field capacity: tak-
ing the simple steady-state solution (linear in  ), and
integrating over the modeled domain to obtain the bulk
field capacity. This alternative approach will grossly
underestimate field capacity because it presumes an infi-
nite time during which drainage occurs. In contrast, the
approach outlined above provides drainage durations that
are consistent with the practical definition of field capac-
ity. Using texturally aggregated data from Clapp and
Hornberger (1978), time to reach field capacity using
Equation (12) is on the order of days, ranging from
1Ð6 days for silt loam to 12Ð3 days for clay, commen-
surate with field observations.

It is important to note that this approach is based upon
a number of critical assumptions which help determine
the context in which its use is appropriate. Because flow
is assumed to be one-dimensional, situations where two-
dimensional effects are dominant may exhibit different
drainage characteristics. Therefore, the method should
only be used for vertical drainage into soil or interflow
along shallow soils either underlain by bedrock or with
a conductivity that decreases with depth. Likewise, the
assumption of homogeneity necessitates caution when
using the definition of Equation (12) for layered or highly
heterogeneous soils.

TESTING

Because estimates of the effective field capacity for
sloping soils are not readily available, here the closed-
form expression for bulk field capacity was compared to
a number of data sets for vertical draining soils (Clapp
and Hornberger, 1978; Rawls et al., 1982; Ritchie et al.,
1987). These sources are often cited in soil property
lookup tables used by surface water hydrological models,
often mixing and matching representative parameters
from one or more sources. The modeled bulk vertical field
capacity is obtained using Equation (12), recognizing that
L D H, the sample length, in the case of purely vertical
drainage.

Because none of the data sets explicitly contain both
measured field capacity and the complete list of param-
eters needed for Equation (12), each data set was indi-
vidually processed for the most appropriate comparison.
For the Clapp and Hornberger (1978) data, estimated field
capacity was first calculated using the standard �0Ð33 bar
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Figure 2. Comparison of the operational definition of field capacity
(Equation 12) to measured and estimated field capacities of vertical soil
columns. Each data point represents a group of soils under one textural

class

approximation �fc D �s�340/ a��b and compared with
the results of Equation (12) using a depth, H, of 4 feet
(1Ð22 m), as reported in (Holtan et al., 1968), the orig-
inal source of the Clapp–Hornberger data. For the data
of Rawls et al. (1982), a typical agricultural tillage depth
of 30 cm was assumed and the reported moisture con-
tent at �0Ð33 bar was used as a surrogate for estimated
field capacity. The Ritchie et al. (1987) was the lone
source of measured field capacity data. For this data
set, Brooks–Corey b parameters were calculated from
the 2 to 4 points on the matric potential-soil moisture
curves provided for each sample, then average porosity,
the inverse of the pore size distribution index, b and sam-
ple length were calculated for each US Department of
Agriculture (USDA) soil texture. Air-entry pressure, not
reported in the Ritchie data set, was taken from the tex-
tural averages of the Clapp–Hornberger data set. Results
are depicted in Figure 2.

Clearly, the approximation of Equation (12) does quite
well in estimating the field capacity for vertical draining
soils over a wide range of textural classes and sample
sizes (from 30 to 122 cm).

EXTENSION TO SLOPING SOILS

While the vertical testing from above is not an explicit
indicator that the solution derived here works equally
well for sloping soils, the physical basis of the model
implies that the approach could be extended to hillslope
conditions. Here we provide a brief discussion of how
this may be done. As described in Soulis et al. (2000),
micro-drainage systems may be generated easily from
digital elevation models and be used as a component
of a larger hydrological model. The micro-drainage
systems are composed of a statistical distribution of

Figure 3. Variation in bulk field capacity, as predicted with Equation (12),
with increasing hillslope length (L) and/or decreasing steepness () for

standard USDA soil textures

hillslopes, where lateral flow occurs both in the form
of runoff (the surface component), interflow (the shallow
subsurface component) and baseflow (the deep subsurface
component) to a river network. Because interflow occurs
along a slope, gravity effects are mitigated and effective
field capacities (that would be used for calculating soil
moisture fluxes) would generally be greater than that
predicted from the 1/3 atm. metric. The influence of
hillslope length and angle upon bulk field capacity is
plotted in Figure 3 for the standard USDA soil textures
(data from Clapp and Hornberger (1978)). Note that this
effect is predicated upon a one-dimensional model, and
is therefore most valid for shallow soils overlying an
impermeable base, as found, for example, in areas where
permafrost is present.

Results from Equation (12) have been directly com-
pared with numerical solutions of the one-dimensional
Richards equation (Equation (1)) for drainage from a
sloping soil horizon. All boundary and initial conditions
are identical to the analytical model above. The primary
difference, then, between analytical and numerical solu-
tion was that the restriction of a negligible suction gra-
dient has been removed. The finite difference equations
were solved using Picard iteration, and both spatial and
temporal resolution were determined to be sufficient to
provide accurate results to within a moisture content of
0Ð001. It is important for the purposes of this compar-
ison that there are no accepted means of defining bulk
field capacity for a sloping soil even under fully con-
trolled conditions. For the purposes of the comparison
here, therefore, results of the analytical formula for bulk
field capacity were directly compared with the bounding-
steady state solution for a hillslope height, H, of 10 m.
This approach is consistent with the practical use of
bulk field capacity in hydrological simulations as a lower
bound for moisture content that can be reached through
interflow-based drainage alone. Similarly, the numeri-
cally calculated steady-state value is the extreme lower
limit of drainage-induced moisture content.

Results of the numerical testing are depicted in Table I
for a number of soil types, with soil properties and
field capacities again taken from Clapp and Hornberger
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Table I. Comparison between numerical results

Soiltype Slope angle Numerical
steady-state

�fc
(Equation (12))

Sand 30 0Ð12 0Ð12
45 0Ð10 0Ð12
60 0Ð09 0Ð11

Loamy sand 30 0Ð13 0Ð13
45 0Ð11 0Ð12
60 0Ð10 0Ð12

Loam 30 0Ð24 0Ð25
45 0Ð22 0Ð23
60 0Ð19 0Ð23

Silty loam 30 0Ð30 0Ð28
45 0Ð28 0Ð27
60 0Ð26 0Ð26

(1978). It is apparent that the analytical expression
produces results similar to the steady-state solution in all
cases. Because the operational definition presented here
is such a good approximation of the endpoint steady-state
solution, it is likely the analytically derived definition of
Equation (12) is best used as a lower bound for hillslope
field capacity. For the purposes of simulation, a larger
value will be more practical, as the steady-state limit will
be reached on the order of months rather than days, as
desired. The above analysis suggests that the assumption
of negligible total head gradient in the suction-driven
region (while quite appropriate for vertical drainage, as
clear from Figure 2) is likely overly restrictive for sloping
soils.

Taking into account the results from both inter-
flow in sloping soils and vertical drainage, the use of
Equation (12) is recommended for general use in infiltra-
tion (vertical) drainage models. Likewise, it provides a
sensible rough estimate for drainage from sloping soils,
one that is both objective and consistent with steady-state
numerical solutions. However, in practice, operational
field capacity for a sloping soil will be higher than the
estimate provided by Equation (12). Further testing in
the field is likely required for both validation and to help
determine the most appropriate means of estimation.

CONCLUSION

A useful expression (Equation (12)) has been derived
as an operational definition of bulk field capacity for a
sloping or vertical soil column, such as used in hillslope-
based hydrological models and infiltration algorithms.
The expression consists of standard soil parameters
required by surface water models and therefore reduces
the number of calibration parameters included in these
models. It has been demonstrated that the definition is
consistent with the existing operational definition of field
capacity for non-sloping soils, but further incorporates an
dependency upon the air-entry pressure of the soil and
is extendible to lateral flow calculations. The concept of

bulk field capacity is shown to be dependent upon sample
length, clarifying some discrepancies between reported
field capacities from the literature.
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