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Abstract:

A new set of formulae for calculating regionally averaged infiltration rates into heterogeneous soils is presented. The solutions
are based upon an upscaled approximation of the explicit Green-Ampt (GA) infiltration solution, and require specification
of the spatial distribution of saturated hydraulic conductivity and/or initial soil water deficit in the sub-basin. The resultant
areal averaged infiltration formulae, which ignore the impacts of run on or spatial correlation, are easily integrated into
existing distributed surface water schemes, and can also be used to calculate saturated soil surface area. The impacts of
preferential flow may be investigated through the use of a bimodal conductivity distribution. The solutions are tested against
Monte Carlo simulations and assessed for accuracy. Interesting results are obtained regarding the impacts of upscaling on GA
infiltration, most notably that the cumulative infiltration is most impacted by low-conductivity soils and that calibration of the
standard (point-scale) GA equation to basin-scale hydrographs will lead to an underestimation of average system hydraulic
conductivity. Copyright  2010 John Wiley & Sons, Ltd.
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INTRODUCTION

The determination of infiltration rates into saturated and
unsaturated soils is of critical importance in hydrolog-
ical modelling. The quantity of infiltration determines
the amount of water available for runoff, evaporation,
root uptake, and recharge to the groundwater beneath. In
detailed physically based models (e.g. SHE (Abbott et al.,
1986)), heterogeneous infiltration processes may be sim-
ulated to a high degree of precision by numerically solv-
ing Richards equation, which governs flow in saturated
and unsaturated porous media. However, for regional-
scale lumped models and land surface schemes, computa-
tional expediency and lack of detailed soil data demands
that researchers use a more approximate parameteriza-
tion of the runoff–infiltration partitioning relationship.
Many existing models (e.g. CLASS (Verseghy, 1991),
WEPP (Flanagan and Nearing, 1995), HSPF (Bicknell
et al., 2001), or SWAT (Neitsch et al., 2002)) use the
Green–Ampt (GA) equation (Green and Ampt, 1911) for
these purposes. Because the GA infiltration equation is
an analytical solution to Richards equation, the physical
meaning of model parameters ostensibly correspond to
soil properties that are measurable in the field. A critical
drawback of this approach is that it does not explicitly
account for the inevitable heterogeneity at the sub-basin
(or computational) scale, which has been shown to have
a significant impact upon the response of a watershed
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soils to a rainfall event (Sharma et al., 1980; DeRoo
et al., 1992).

Recognizing that heterogeneity of saturated hydraulic
conductivity is a significant driver of net basin infil-
tration, researchers have attempted to develop general
upscaled expressions for infiltration based upon direct
upscaling of point-scale governing equations (Chen et al.,
1994) or of point-scale infiltration solutions (Maller and
Sharma, 1981; Dagan and Bresler, 1983; Sivapalan and
Wood, 1986; Smith and Goodrich, 2000; Govindaraju
et al., 2001). These expressions were of varying com-
plexity, with later extensions addressing complex lateral
relationships such as run on (Corradini et al., 2002), spa-
tial correlation (Govindaraju et al., 2001), and rainfall
variation (Morbidelli et al., 2006). While all are theo-
retically sound within the bounds of their assumptions,
these solutions individually suffer from an inability to
closely match computational (i.e. Monte Carlo) solu-
tions for the complete range of soil textures, as demon-
strated by Corradini et al., (2002). This, in part, is due
to lower-order approximations used for the GA equation
at the point scale (e.g. that of (Philip, 1957)) or empir-
ical approximations that have not been tested under the
full range of parameters (Smith and Goodrich, 2000;
Govindaraju et al., 2001). Most of the approaches addi-
tionally require some form of series expansion, Monte
Carlo simulation, numerical integration, or Latin Hyper-
cube sampling in order to generate the expected value of
infiltration rates (Dagan and Bresler, 1983; Govindaraju
et al., 2001; Corradini et al., 2002), and may perhaps be
considered too complex to include in many land surface
schemes.
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Here, an alternative direct method for upscaling the GA
solution for laterally heterogeneous soils is presented. It
is based upon a new and accurate approximation of the
explicit GA formulation. The method addresses not only
spatial variability in hydraulic conductivity (as addressed
by Maller and Sharma (1981); Dagan and Bresler (1983);
Sivapalan and Wood (1986); Govindaraju et al., (2001);
Corradini et al., (2002)) but also variability in initial
saturation, porosity, and/or wetting front matric potential.
Results are compared to Monte Carlo simulations of
spatially random infiltration without run on.

THE GA INFILTRATION MODEL

The point infiltration equation developed by Green and
Ampt (1911) extended to conditions of non-immediate
ponding Mein and Larson. (1973); Chow et al. (1988)
is typically presented in terms of cumulative infiltration,
F�t�, as a function of time, t (e.g. Dingman (2002)):

F�t� D




wt for t � tp

F�tp�C ˛ ln
(
F�t�C ˛
F�tp�C ˛

)
Cks�t � tp� for t > tp

�1�

where w is the constant rainfall rate, ˛ D j fj��s � �0�,
 f is the wetting front suction head, �0 is the (uniform)
initial moisture content, �s is the soil porosity, ks is the
saturated hydraulic conductivity of the soil, and tp, the
time to ponding, is given by:

tp D ˛ks

w�w� ks�
�2�

Given the cumulative infiltration, F�t�, the infiltration
rate, I�t� D dF/dt may be calculated as:

I�t� D
{

w for t � tp

ks

(
1 C ˛

F�t�

)
for t > tp

�3�

While most discussions of the GA formulation focus
on the evolution of infiltration rate over time, it is
revealing to plot infiltration rate as a function of ks,
as shown in Figure 1. Here, the dimensionless time
parameter, X, varies from X D 0 at t D 0 to X D 1 at
t D 1, and is defined as follows:

X D 1

1 C 1/�w/˛�t
�4�

The curves in this figure are snapshots in time: for a
given conductivity, the infiltration rate decreases with
increasing X from I�0� D w with X D 0 to I�1� D ks

with X D 1, as expected. The objectives of this paper are
to first identify appropriate (integrable) approximations
for these curves, then to use these in order to develop
simple explicit expressions for areal-averaged infiltration

Figure 1. Dimensionless Green-Ampt infiltration rate as a function of
dimensionless conductivity. Individual curves correspond to snapshots of
dimensionless time, X, which progresses from X D 0 at t D 0 to X D 1

at t D 1. For the definition of X, see text

rate subject to a known distribution of saturated conduc-
tivity and/or ˛.

Once a reasonable approximation for infiltration rate as
a function of conductivity is found, the mean infiltration
rate for heterogeneous media and/or heterogeneous initial
conditions may be obtained by application of simple
statistical laws. For the case of homogeneous initial
conditions and heterogeneous conductivity, the mean
infiltration rate, I, may be calculated as:

I�t� D
∫ 1

0
I�X�t�, ks� Ð fk�ks�dks �5�

where fk is the probability distribution function (pdf)
of saturated hydraulic conductivity within the modelled
domain. Conductivity is here assumed to be a random
variable represented using a standard log–normal distri-
bution:

fk�ks� D 1

ks�Y
p

2�
exp

(
� �ln�ks�� �Y�

2

2�2
Y

)
�6�

where �Y and �Y are the mean and standard deviation
of log hydraulic conductivity. A more general expression
is available for the case of general variability in both
conductivity, initial moisture deficit, and/or wetting front
matric potential:

I�t� D
∫ 1

0

∫ 1

0
I�X�t, ˛�, ks� Ð fk˛�ks, ˛�d˛dks �7�

where fk˛ is the joint probability distribution of saturated
conductivity and ˛. It is assumed here that there is no
lateral relationship between vertical soil columns, either
statistically (in the form of spatial correlation) or physi-
cally (in the form of run on processes). The implications
of these assumptions are addressed elsewhere (Corradini
et al., 2002; Govindaraju et al., 2001).

APPROXIMATIONS TO THE I-KS CURVES

While usually expressed in implicit form (as in Equation
1), the GA solution may be formulated explicitly. Here,
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the authors have identified alternative approximations to
Equation 3 that are more amenable than those previously
proposed (e.g. Barry et al., (2005)) to closed-form inte-
gration with respect to both ks and ˛. It is clear from
Figure 1 that a reasonable first approximation of infiltra-
tion rate may be given by the linear approximation:

I�t� D min
(
w,
ks

X

)
C ε�X, ks� �8�

where ε�X, ks� is the deviation of the exact solution from
the linear approximation, plotted in Figure 2. The linear
approximation of Equation 8 is exact at the endpoints
(ks/w D 0 and ks/w ½ X), and diminishes in quality for
reduced ratios of conductivity to rainfall rate. As apparent
in Figure 2, an error of up to ¾13Ð5% is possible for small
conductivities at early times. Equation 8 will be used as
the starting point for the approximation used here, and
an attempt is made to identify a viable (and integrable)
approximation to ε�X, ks�.

Upon substitution of Equations 6 and 8 into Equation
5, the first-order contribution to the mean infiltration rate
may be directly evaluated using basic calculus, leading to
the following first approximation for average infiltration:

I�t� D w

2
erfc

(
ln�wX�� �Y

�Y
p

2

)

C w

2wX
exp

(
�Y C �2

Y

2

)

erfc
(
�Yp

2
� ln�wX�� �Y

�Y
p

2

)

C w
∫ X�t�

0
ε�X�t�, ks� Ð fk�ks�dks �9�

Where the remaining epsilon term still must be evaluated
numerically. The ε function was here approximated using
curve fitting techniques. The ‘true’ surface used for fitting
was generated using the iterative approximation of (Barry
et al., 2005). The best approximation found was given by:

ε ³ 0Ð3632 Ð �1 � X�0Ð484 Ð
(

1 � ks

wX

)1Ð74 (
ks

wX

)0Ð38

�10�

Figure 2. Dimensionless error in the linear approximation, ε, as a function
of dimensionless conductivity, normalized to the dimensionless time
parameter, X. The curve labelled 0Ð0Ł is the limit of ε as X approaches

zero

resulting in a maximum error of 0Ð006 w (0Ð6% error),
acceptable for nearly all modelling applications, espe-
cially considering the errors from ignoring heterogene-
ity are significantly larger. With this approximation, the
remaining integral in Equation 9 can be evaluated quite
effectively with simple single-interval two-point Gauss
quadrature.

Figure 3 depicts the difference in behaviour between
the standard GA model and the upscaled version used
here for a number of different mean dimensionless
conductivities with the same coefficient of variation.
Notably, the upscaling process smooths out the threshold
behaviour of the basin, as the ponding time is no longer
a fixed point in time. Rather, different locations in space
reach saturation at different points in time. Regardless
of the degree of heterogeneity, the cumulative infiltration
(which is linked with the total volume under the curve)
is less than that predicted with the point-scale solution.

The approach above is not strictly limited to a simple
log–normal distribution. A simple and useful revision
is to represent the influence of preferential flow via the
use of a bimodal log–normal distribution, where the
conductivity distribution function is written as the sum of
two log–normal distributions, i.e. fk�ks� D �ω�f1�ks�C
�1 � ω�f2�ks�, where ω is a weight coefficient (0 < ω <
1) and f1 and f2 have unique means and standard
deviations. Because integration is a linear operator, the
average solution is easily obtained through the application
of Equation 9 for each component.

An interesting by-product of the formulation derived
above is that the evolution of saturated area, As, during
a storm event may be determined as the total area of the
basin, A, multiplied by the percentage of saturated ground
at any point in time:

As�t� D A
∫ �

w
ks

�1�wt

0

∫ wX

0
fk˛�˛,K�dksd˛ �11�

Figure 3. Evolution of dimensionless infiltration rate with the dimen-
sionless time parameter for standard (solid) and upscaled (dashed) GA
solutions. Three different ratios (0Ð2,0Ð5,0Ð8) of average conductivity to
rainfall rate are depicted. The coefficient of variation (ks/�k ) for all three

upscaled models was kept fixed at 0Ð5
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Which for a log–normal ks distribution and fixed ˛ leads
to

As�t� D A
∫ wX

0
fk�ks�dks

D A

2

[
1 � erf

(
�Y � ln�wX�p

2�Y

)]
�12�

where, combining Equations 2 and 4, wX is the maxi-
mum value of ks producing saturation at time t.

Figure 4 illustrates the differences in the transient
evolution of surface saturation for varying degrees of
heterogeneity in ks. Here, ks D 0Ð4 w. Instead of the
abrupt switch from unsaturated to saturated surface
predicted by the classic GA model, the upscaled version
appropriately depicts a gradual transition, with some of
the soil surface saturating well before the mean ponding
time, and some (the soil with a hydraulic conductivity
greater than the rainfall rate) staying perpetually dry.
The evolution of this process spreads out as heterogeneity
increases.

VARIABLE INITIAL SOIL MOISTURE/WETTING
FRONT SUCTION

Unlike conductivity, which is known to be well-represen-
ted using a log–normal distribution, spatial variation
of the aggregate parameter ˛ D  fj�s � �0j is not well-
characterized in the literature. The wetting front matric
potential,  f, is a function of soil texture and the
form of the characteristic soil curves (Neuman, 1976),
and is therefore correlated to conductivity. It varies
roughly linearly with log conductivity, ranging from
about 10 cm for sands up to 100 cm for clays, and can be
reasonably well-characterized with a normal distribution.
Presumably, the initial saturation deficit, Sd D j�s � �0j
can also be represented using a normal distribution
(Patgiri and Baruah, 1995), but due to the presence of
fixed upper and lower bounds is likely better represented
using a beta or uniform distribution (Haskett et al.,
1995; Det Norske Veritas, 1997). Multiple field studies
of soil moisture distributions have discovered wildly
varying distributional characteristics, depending upon
characteristics as varied as soil texture, storm duration,

Figure 4. Evolution of basin surface saturation for various degrees of
heterogeneity in hydraulic conductivity. X is the dimensionless time

parameter

vegetation, soil organic content, and season (Sharma
et al., 1980; Merzougui and Gifford, 1987; Miller et al.,
2007; Famiglietti et al., 2008; Lakhankar et al., 2009).
Due to the large variation in infiltration behaviour from
site to site, and the significant number of unknown
correlations between variables, it is likely impossible in
this case to choose one ‘correct’ distribution of ˛. Instead,
we will assume here for the purpose of mathematical
simplicity that ˛ is appropriately represented with a
normal distribution characterized by a mean �˛ and
standard deviation �˛. To avoid non-negativity, it is
recognized that the negative portion of the distribution
corresponds to a finite probability of ˛ being equal to
zero (i.e. the area under the negative portion of the
normal distribution corresponds to the percentage of soil
initially saturated). It is assumed that these distribution
parameters may be either calibrated or estimated from
known or approximated distributions of  f, �i, and �s.
Under these conditions, the function 1/X also satisfies a
normal distribution, and we are able to once again obtain
a simple formula for I�t� subject to a distribution of
soil properties, in this case, variability in initial moisture
content and/or wetting front potential subject to a fixed
hydraulic conductivity:

I�t� D w

2
C w

2
erfc�A�C kserfc�B�

C ks

(
1 C �˛

wt

)
1

2
[erfc�A�� erfc�B�]

C ks

wt

�˛p
2�

[exp��B2�� exp��A2�]

C w
∫ �

w
ks

�1�wt

0
ε�X�˛, t�, ks�f˛�˛�d˛ �13�

where A D ��˛ � �w/ks � 1�wt�/�
p

2�˛� and B D �˛/
�
p

2�˛�. Once again, the limit of this expression as
�˛ ! 0 is the original expression from Equation 8.

Both solutions (Equations 9 and 13) are unique when
compared to previous solutions proffered in the literature.
Firstly, they are valid over the entire range of parameters
and times. They correctly converge upon the standard
GA equation in the limit as �Y and �˛ go to zero, a feat
unattainable by the empirical approximations of Smith
and Goodrich (2000). Lastly, because the solutions are
cast in terms of the chosen dimensionless quantities,
numerical integration of the ε integral is not sensitive to
the particular set of parameters; any scheme that works
appropriately in dimensionless space is appropriate for
all possible model configurations. This, along with the
relative simplicity of the solution, encourages inclusion
in existing hydrological models.

TESTING

To test the validity of the above derivations and demon-
strate some of the interesting products of this approach,
the solution has been directly compared to results of
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a Monte Carlo model. For the first test case, a het-
erogeneous domain was generated using 25 000 parcels
with conductivities that satisfy the log–normal pdf with
standard deviations of �Y D 0Ð1, 0Ð5, 1Ð0, and 2Ð0, and
mean dimensionless conductivity of ks/w D 0Ð4 (ks D
1Ð6 cm/h). This was repeated for a dimensionless con-
ductivity of ks/w D 0Ð1, to survey the range of possible
responses. Since only vertical processes are considered
here, spatial correlation is ignored. For the Monte Carlo
simulation, the value of ˛ was specified as 3 cm; how-
ever, the curves are valid for all soils with this conductiv-
ity/rainfall ratio, as the dimensionless time parameter, X
fully encapsulates the impacts of variation in ˛. The aver-
age and cumulative infiltration into the heterogeneous soil
were calculated using both the Monte Carlo approach and
Equation 9. Results are depicted in Figure 5a and b. It is
clear that for both cases, the semi-analytical upscaling
is a very good approximant to the Monte Carlo simu-
lations: maximum errors are on the order of 3%, and
are entirely due to the approximation of the ε integral in
Equation 9, which was evaluated using single interval
two-point Gauss–Legendre quadrature. For all practi-
cal purposes, the analytical and Monte Carlo solutions
may be considered identical in output. Similar results are
obtained for other values of ks/w.

An identical test was run for the variable initial
saturation case of Equation 13, where an analogous
Monte Carlo simulation was devised. These results are
depicted in Figure 6. Once again, differences are on
the order of 3%. Here, the two-point Gauss quadrature

Figure 5. Semi-analytical (solid) and Monte Carlo (circles) dimensionless
infiltration for heterogeneous domains with an average conductivity, ks,
of 1Ð6 cm/h (a) and 0Ð4 cm/h (b), and rainfall rate of 4 cm/h. Variability
in conductivity is quantified using the normalized standard deviation of
log-conductivity, �Y, which is here varied from 0 (homogeneous) to 2

(highly heterogeneous)

Figure 6. Analytical (solid) and Monte Carlo (circles) dimensionless
infiltration curves for a homogeneous domain with spatially variable

initial conditions. Here, ks D 1Ð4 cm/h and w D 4 cm/h

integration had to be modified in order to accurately
calculate the integral in Equation 13 to a sufficient degree
of accuracy, as discussed in Appendix A.

DISCUSSION

As it is apparent from the results, the impact of spatial
variability of ˛ and, primarily, ks on infiltration is both
calculable and significantly influences rainfall excess
generation. The implications of this heterogeneity have
been addressed, in part, by previous authors. We focus
here primarily on the implications upon the calibration of
existing homogeneous models.

As can be seen by comparing Figures 5 and 6, hetero-
geneity in ks has an effect upon the asymptotic solution
as time approaches infinity, while variation in ˛ is short-
lived, only directly influencing the solution, prior to and
shortly after the effective (mean) ponding time. This is
an indicator; heterogeneity in soil type is of much greater
importance than heterogeneity in initial conditions. In
addition, this indicates that variation in initial conditions
will be of greater importance for short duration storms or
during dry antecedent conditions. For practical purposes,
it probably makes more sense to characterize the con-
ductivity heterogeneity than the heterogeneity in initial
conditions. While the two have clearly different effects,
it is likely that our ability to uniquely estimate both �k
and �˛ from field data, where this signature is filtered
through additional hydrologic processes and data error,
is small to non-existent.

Noteworthy is the distinct behaviour of the upscaled
solution as compared to the original point-scale solution,
depicted in Figure 3. It is clear that, when estimated from
automatic or manual calibration to appropriate field data,
the calculated hydraulic conductivity will not correspond
to the average conductivity in the domain, but rather
underestimates the conductivity by a factor proportional
to the degree of spatial variability (see also Figures 5
and 6). This underestimation is required in order to obtain
the same total infiltration volume, i.e. with a high degree
of heterogeneity, the upscaled solution generates more
surface runoff and less infiltration than the ‘equivalent’
point-scale solution. This may be the primary reason why
the literature recommends an effective GA conductivity
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value smaller than estimated from soil data (Risse et al.
(1994); Nearing et al. (1996)): increased heterogeneity
leads to a smaller amount of water infiltrating for a given
average ks. Strictly speaking, however, this estimate of
conductivity cannot truly be considered an ‘effective’
value, as the transient behaviour of the upscaled (more
physically realistic) solution cannot be replicated by
simply using an artificially small conductivity (see also
Corradini et al. (2002)).

CONCLUSIONS

Explicit approximations of the upscaled Green and Ampt
infiltration equation have been derived, which separately
consider lateral heterogeneity in saturated hydraulic con-
ductivity (Equation 9), and wetting front matric potential,
porosity, and/or initial soil moisture (Equation 13). The
approximations, which neglect effects of run on or spa-
tial correlation, have been evaluated against Monte Carlo
simulations and produce results accurate to 3% of the
computationally intensive ‘exact’ cases, at a computa-
tional cost similar to the original GA formula without
upscaling. The integrals obtained from the upscaling pro-
cess may be evaluated analytically or with single-interval
low-order quadrature, and are therefore quite suitable
for inclusion in land surface schemes and other surface
water models where computational speed is a significant
issue. A critical result here is that the upscaled form of
the GA equation is different than the point-scale solu-
tion with upscaled parameters, indicating that calibration
alone is insufficient to correctly replicate the infiltration
process in heterogeneous media. ‘Effective’ conductivi-
ties at the basin scale that would allow direct application
of the point-scale GA model to even mildly heteroge-
neous domains do not exist. However, approximate effec-
tive conductivities (which can match the time-integrated
ratio of runoff to infiltration) will always be smaller than
field-measured conductivities, with the difference propor-
tional to the degree of soil heterogeneity.
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UPSCALED GREEN–AMPT SOLUTIONS

APPENDIX

EVALUATION OF THE VARIABLY SATURATED ε
INTEGRAL

The most computationally efficient and reasonably accu-
rate means of calculating the integral in Equation 13 was
found to be a combination of two-point Gauss quadra-
ture (for earlier times, where the impacts of scaling are
dominant) and the non-upscaled Lambert approximation
(for later times, where upscaling has little or no effect
but two-point quadrature can lead to numerical instabil-
ities). Defining Xc as the critical X for the combination,
the modified two-point Gauss quadratic integration was
defined as:

f�t� D
{

f2p for X � Xc

fLambert for X > Xc

where f2p is the solution for single-interval two-point
Gauss quadrature, fLambert is the solution of the Lambert
approximation, and Xc is defined as:

Xc D
{

0Ð45 for �˛ � 1
3�˛

0Ð60 for �˛ >
1
3�˛
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