## What is Hydrological Parameterization?





**Scotty Creek Basin** 

Abstraction of complex processes into a model.  $\rightarrow$  simplification, scaling up, "fitting" (fuzzy!)

The model must capture the **ESSENSIAL FEATURE** of physical processes.

### How do we identify the **Essential Feature**?

- Field "intelligence" gathering
- Knowing what to look for
  - → Hydrological process Equations and models
- Look at big and small picture





This is the best (and most fun) part of hydrological science!

# **Hydrologically Distinct Land-Cover Types**

### flat bog

### peat plateau

## channel fen

permafrost





## Lateral Drainage in CLASS 3.1



Drainage flux per area, q

 Maximum drainage, q<sub>max</sub>
→ Complete saturation.
Depends on slope angle, hydraulic conductivity.

Average water storage, *u* 

Maximum storage,  $u_{max}$  $\rightarrow$  Complete saturation.

Normalized drainage q\* = q/q<sub>max</sub>

Normalized storage *u*\* = *u*/*u*<sub>max</sub>

Complex interplay of many processes

### Finite Element Variably Saturated Flow Model Princeton UNSAT-2D



### Finite Element Model (FEM) as a Virtual Slope

- Verify the detailed slope model against field data.
- Then, use it to parameterize a basin model.



CLASS 3.1 Analytically derived q\*-u\*.

#### FEM

- 1. Numerical drainage experiment.
- 2. Derive numerical  $q^*-u^*$ .
- 3. Determine equivalent  $q^*-u^*$  for CLASS 3.1.





Time derivative of baseflow discharge (Q) is proportional to  $Q^b$ .  $\rightarrow b = 3$  for early time, 1 for late time.

*K* can be determined from the intercepts of two envelope curves.



## **Scale-Dependent Conductivity?**



photo by J. Pomeroy



 $K = 3 \times 10^{-3} \text{ m/s}$ 



## No, it is "model-dependent" conductivity!

## Lake O'Hara Research Basin Parameterization? What? How?





## **Major Hydrological Land-Cover Types**



### Example: Talus slopes



### **From Processes to Parameterization**

#### **Field observation**



physically-based model (e.g. FEM)



Q

grid-scale function

Storage

Q

simulation and sensitivity analysis

### **Take Home Messages**

- 1. Parameterization by a detailed, "virtual" model.
- 2. Scale-dependent vs. model-dependent parameter.
- 3. Process people need to understand the equations and models VERY WELL.
- 4. Modellers need to make the algorithm transparent to process people:
  - → Consistent with published papers. No arbitrary "tricks" in the code.