Upscaling Strategies for Integrated Modeling in IP3

by E.D. Soulis and F.R. Seglenieks

University of Waterloo Department of Civil Engineering

Acknowledgments

- Funding and patience
- IP3 John Pomeroy et al
- MAGS H. Woo et al
- MSC/CRB B. Goodison, D. Verseghy, R. Stewart
- NWRI A. Pietroniro, P. Marsh
- NSERC Partnership Program
- Scientific help and guidance
- D. Verseghy, A. Pietroniro, M. McKay
- Code, parameterizations and tests
- K. Snelgrove, T. Whidden, S. Fassnacht

Outline

- Introduction
- MESH release
- MESH comparison with CRHM
- A few results from Scotty Creek

Mississippi Floods 1993

Model Hierarchy

Resolution

Model Comparison

- All models are distributed
- All models are physically based
- Resolutions overlap
- Major difference is the application domain
 (Basin, Regional, Global)
- Bookkeeping skill determines the domain

How To Extend Domain

- 1) Use generic algorithms
- CRHM typically treats HRUs individually
- MESH/GEM groups representative HRUs

InterHRU Transfers

Proposed Diversion Strategy

can have one receiving class and two source classes
transfer is based on the square-root of the ratio of the area of the receiving land class divided by that of the source land class

Grid element with tile diversion

How To Extend Domain

- 2) Use distribution based algorithms
 sum fluxes by area
 - or use pdfs of important properties

Site Distribution of Peat Plateaus

3) Embed More Physics in the Tile Algorithms

Class Landscape Unit (footprint) ← WATDRAIN (lateral processes) WATFLOOD (routing)

MAGS Tile

Surface Runoff: Manning's Equation

$$Q_{over} = \left(\frac{1}{n}\right) \cdot d_e^{5/3} \cdot \Lambda_I^{1/2} \cdot L$$

Infiltration redistribution interflow: Richard's Equation

$$-\frac{\partial K_{\nu}(\theta)}{\partial z} + \frac{\partial}{\partial z} \left[K_{\nu}(\theta) \frac{\partial \psi(\theta)}{\partial z} \right] = \frac{\partial \theta}{\partial t}$$

Drainage or Recharge: Darcy's Law

$$q_{drain} = K_{\rm v}(\theta_3)$$

$$\Psi = (1 - f) \cdot \left[\overline{\Psi} + \sqrt{\frac{(\Psi - \Psi_0)^2}{4} + K}\right]$$
$$+ f \cdot \left[\overline{\Psi} + \sqrt{\frac{(\Psi - \Psi_1)^2}{4} + K}\right]$$

Where Ψ_0 and Ψ_1 are the end state suctions and f and κ are functions of distance, x and time, t.

Richard's Equation

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[K(\psi) \left(\frac{\partial \psi}{\partial z} + 1 \right) \right]$$

where

K is the hydraulic conductivity, ψ is the pressure head, z is the elevation above a vertical datum, θ is the water content, and t is time

Drying Curves

SAND AND LOAM

400

Meso/Micro Model Comparison

Recession Curves Comparison

Red line is a typical gravity dominated curve. Green line is the corresponding suction dominated solution. WATDrainV2 uses an empirical blend of these. WATDrainV3 will use Equation (1) which is the blue line in Figure 3.

4) Some General Rules

- Do everything we can to minimize number of HRUs
- 2-4 HRUs per grid
- Modelling Scale 1/10th of target domain

