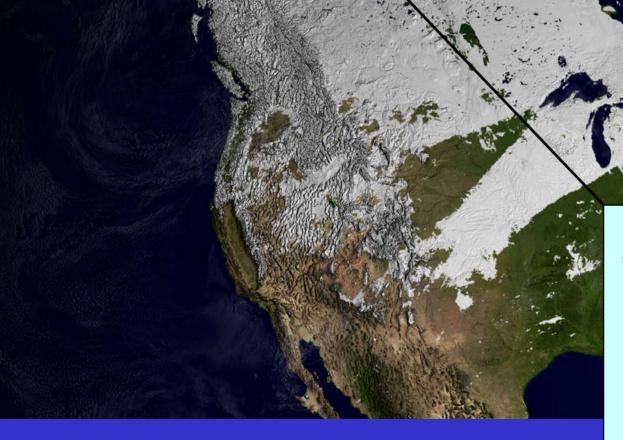
Snow and Lake Hydrology at the Forest/Tundra Transition in the Western Canadian Arctic: Processes, Parameterization, and Modelling

Philip Marsh

Adjunct Professor Dept. of Geography University of Saskatchewan & Research Scientist National Water Research Institute Environment Canada



Main Themes of this project

- Will consider:
 - snow accumulation, melt and runoff at a variety of scales
 - the role of lakes in the hydrological cycle
 - understanding processes and developing parameterization
 - a variety of terrain and vegetation types at the northern forest/tundra transition zone, including: forest, shrubs, tundra and lakes
 - use a variety of models. In addition to CRHM, CLASS, and MESH, we use a variety of process models, small scale hydrological models, and snow models.

Environment E Canada C

Environnement Canada Long term observation sites that contribute to: a variety of Environment Canada programs including ongoing studies related to the proposed MGP project; CCAF; a previous CFCAS project; and MAGS for example

Existing Field Sites - Inuvik, NWT area

*

Canada

t Environnement Canada

"Standard" hydrological research observations

Lake

Snow survey

92 5 19

LiDAR Data

-Data available for:

- HPC
- TVC

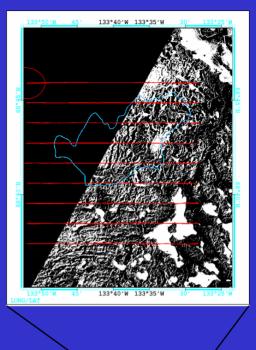
TVC Basin

- Drained like site
- Denis Lagoon

Data includes:

- DEM
- Vegetation height
- at 2 m x 2m grids

NRC Twin Otter Aircraft


• aircraft eddy correlation measurements provide an estimate of basin average measurement of spatial variability at a 2 km resolution



Environment Canada

Environnement Canada

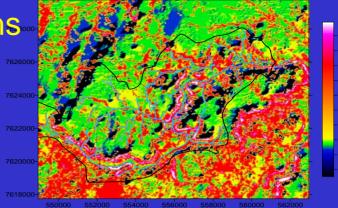
This combination of data sets helps us understand how to scale upwards from a point to a region

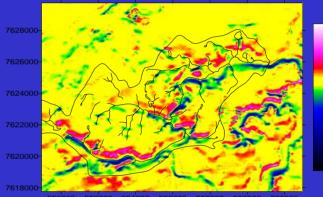
- Larger Scale
 - 20 km: aircraft flux measurements
 - 2 km: aircraft flux measurements
 - 100 m: tower based flux measurements
 - Point: measurements of micromet, snow accumulation and melt

• <u>Smaller Scale</u>

Experience with a variety of models used to upscale and to test parameterizations

- Larger Scale
 - CRCM
 - MESH
 - CLASS
 - CRHM
 - TOPOFLOW
 - SNOWMODEL
 - "Pohl" model (collection of radiation, wind, advection, melt models)
 - Process models
- <u>Smaller Scale</u>




Snow Processes and Parameterizations-

Will build upon work by our research group to consider:

- Spatial variability in
 - snow accumulation
 - turbulent fluxes
 - incident radiation
 - advection
 - snowmelt
 - change in SWE and factional area
- include aircraft flux data for validation
- utilize Lidar DEM and vegetation data
- include multiple years of data

- improved incorporation of the role of shrubs using ongoing work with Murray Mackay using observations and CLASS Environment Environmement Canada

550000 552000 554000 556000 558000 560000 56200

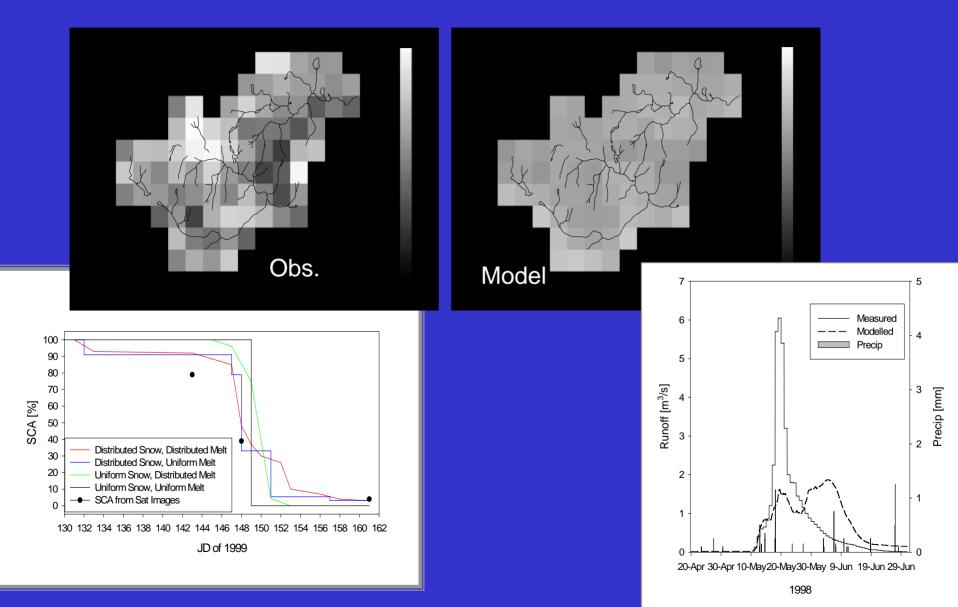
Lake Processes and Parmeterization

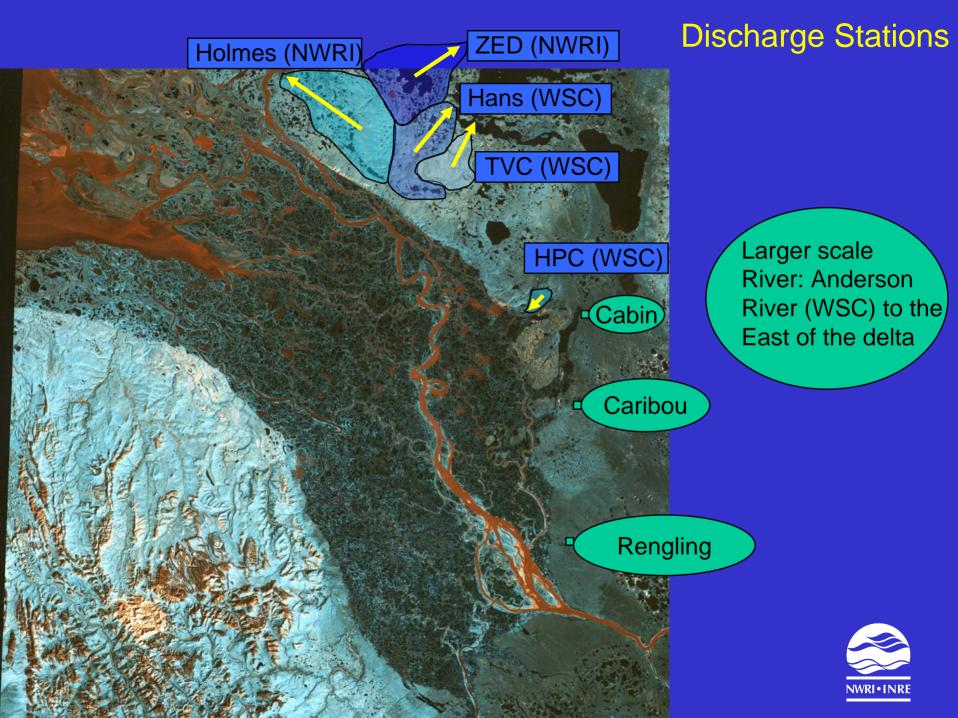
Will consider:

- lake ice
- open water evaporation
- energy and water balance
- runoff into/out of lake
- will work with Murray Mackay to test lake model
- will work with Raoul Granger to consider lake evaporation

 consider effects of sub-grid lakes on regional fluxes

Environment Env Canada Car


Environnement Canada



Denis Lagoon

Hydrological Model Testing

Schedule, milestones, and deliverables

- Year 1
 - T1: install and upgrade hydrometeorological network in research basins (completed)
 - T1: begin analysis of MAGS turbulent flux data (tower data ongoing, aircraft data delayed until appropriate student found)
 - T2: setup CRHM at test basins
 - T2: assess existing parameterizations mass and energy (ongoing with comparison to CLASS with M. Mackay
 - T2: Assessment of MAGS aircraft for use in regional fluxes (ongoing, but delayed due to reduced funding)
- Year 2
 - T1: field sites operational
 - T1: ongoing analysis of radiation and turbulent transfer data from lake and snow experiments
 - T1: new and developing descriptions CHRM
 - T2: evaluate MESH to mass and energy
 - T2: develop improved snow, melt parameterizations

Issues

- Recruiting 2 Ph.D. students to work on this project
- Aircraft flux data
 - Budget reduction has affected this aspect of the project
 - Discussions with Murray Mackay on how best to proceed

Why?

- Training of next generation of hydrologists
- Environment Canada
 - We require improved predictive models
 - For variety of major impact studies
 - Providing science required for EC to carry out the impact assessment and licensing of the proposed Mackenzie Gas Project
- EC realizes that we must work in collaboration with our university colleagues to develop improved predictive methods

