Enhancing Model Development & Predictions with the Dynamically Dimensioned Search (DDS) Algorithm

IP3 Workshop #1 Oct. 19, 2006 Saskatoon, Saskatchewan

Dr. Bryan Tolson

Assistant Professor

Department of Civil & Environmental Engineering

University of Waterloo, Canada

What is DDS?

- A new tool tailored to help environmental modellers more effectively & efficiently calibrate their models
- Simple and fast approximate global optimization algorithm for automatic calibration
- Designed specifically for automatic calibration:
 - Must be simple to implement
 - Must generate good results in modeller's time frame
 - Find good calibration solutions rather than globally optimal
- Tolson & Shoemaker (accepted) in WRR

Main Limitation of Current Calibration Schemes

- They require too many model evaluations given our models take too long to run!
 - 10,000 or more model evaluations (e.g. using SCE or GLUE) simply infeasible for distributed models
- Many recent advancements in automatic calibration were not developed with computationally expensive distributed hydrologic/land surface models in mind

Keys to DDS

- Algorithm scales to user-specified computational limits
- DDS mimics the manual calibration process:
 - Start at an initial solution & try to improve it
 - Always search around best known solution
 - Early in search, change MANY model parameters at a time
 - Later, change FEWER model parameters at a time
 - Near end of search, change only 1 or 2 model parameters at a time
- DDS vs Manual calibration difference
 - Manual uses knowledge to choose next parameters to modify
 - DDS picks the parameters randomly

DDS Performance Comparison 1 – 10 optimization trials

14 parameter daily flow calibration for SWAT2000 model

DDS Performance Comparison 1 – 10 optimization trials

14 parameter daily flow calibration for SWAT2000 model

DDS Performance Comparison 1 – 10 optimization trials

14 parameter daily flow calibration for SWAT2000 model

Robustness of DDS

- DDS has been applied to a number of case studies, for example:
 - 6, 9, 10, 14, 20, 26, 30, 34 & 50 calibration parameters
 - And anywhere from 100 to 100,000 model evaluations
- In each case, DDS was applied with the *same optimization algorithm parameters* and generated good results

Observed DDS Algorithm Behaviour as User Computational Limits Change

DDS2000 means DDS with 2000 maximum function evaluations

Observed DDS Algorithm Behaviour as User Computational Limits Change

Observed DDS Algorithm Behaviour as User Computational Limits Change

Should We Calibrate More or Less Model Parameters?

- Increasing decision variables (calibrated parameters):
 - increases search space size \rightarrow increases problem difficulty
 - more flexibility to fit data \rightarrow improve objective function
- Does opt. algorithm find better solution for *same amount of computational time* given more flexibility?
 OR
- How important is it to pick only the most sensitive parameters (sensitivity analysis) prior to calibration?

Objective Functions Problems 1 & 2

• Problem 1 & 2 are same except for # parameters calibrated

Objective Functions Problems 1 & 2

• Problem 1 & 2 are same except for # parameters calibrated

My Research Plans for IP3

- Make DDS available to IP3 modellers
 Matlab & Fortran 90, MESH/MEC
- Develop DDS into an effective multi-objective optimization tool
 - Modellers can more effectively match multiple sets of field data (streamflow, soil moisture & snowpack etc.)
- Help modellers find transferable land cover parameter sets to use with more confidence in ungauged basins
- Develop an objective methodology for evaluating improvements in model predictions due to changes in model physics, scaling etc.

THANKS

