www.ec.gc.ca

Update on Lake Evaporation Studies

NWRI

Raoul Granger November/07

Objectives of Evaporation Studies

- Provide a reliable parameterization for open water evaporation for <u>short-term</u> (hourly, daily) calculations.
- Application in Hydrologic and Meteorological models
- Examine:
 - The advection process.
 - Application to remote sensing

11/29/2007

Evaporation Models are parameterizations of one or more of the conditions required for evaporation to occur:

For evaporation to occur there must be:

- a supply of water at the surface,
- a supply of energy to satisfy the requirement for the phase change, and
- a transport mechanism to carry the vapour away from the surface (wind, vapour gradient).

Lake Evaporation Observations: Quill Lake, 1993 - open water and land surface

Environment Environnement Canada Canada

Weisman and Brutsaert (1973) showed that lake evaporation involves <u>advection</u>, and that one needs to have information on both the land and water surfaces.

$$E_l = E_a + a\rho u_* \cdot (q_s - q_{as}) \cdot (X_f / Z_o)^{-b}$$

Where the coefficients *a* and *b* are related to dimensionless advection parameters

Quill Lake, 1993

Diurnal Cycle of Stability: Land and Water

Canada Canada

Estimating Lake Evaporation

Will require a knowledge of the water surface temperature, combined with a boundary layer model capable of representing the advection of energy and the proper transfer coefficient for both stable and unstable conditions.

Environment Environnement Canada Canada

Estimating Lake Evaporation

First step: Examination of the vapour transfer mechanism... the effect of wind speed and fetch.

Environment Environnement Canada Canada

Crean Lake, 2006

Environment Environnement Canada Canada

Landing Lake, NWT, 2007

Environment Environnement Canada Canada

Crean Lake, 2005

Effect of Wind Speed on Lake Evaporation (Crean '06)

Effect of Fetch on Evaporation

Environment Canada

Environnement Canada

Effect of Fetch

Environment Environnement Canada Canada

Effect of Fetch on Evaporation

• LE =
$$a*U*(e_s - e_a) + b$$

 $a = 3.27 \ln(X) + .67$ b = 22.16 - .0015 * X

• LE = c*U c = 41.82*X^{-.09}

11/29/2007

Page 17

Modelled Lake Evaporation

Environment Environnement Canada Canada

Modelled Lake Evaporation

Environnement

Canada

Environment Canada

Things to do

- Effect of stability and land-lake contrast.
- Apply to total lake area.
- Redo Weisman-Brutsaert advection analysis with better parameterizations for stable conditions.
- Begin looking at remote sensing.

Page 20

11/29/2007

Environment Environnement Canada Canada Page 21

Lake Evaporation Observations: Crean Lake 2005

Environment Environnement Canada Canada

Ratio of transfer coefficients : stable conditions

Crean Lake, 2006

Boundary Layer Investigation

- Upwind and Downwind tethersonde profiles were obtained on Sept. 1/06
 - Validation of boundary layer development
 - Estimation of Evaporation from Boundary Layer Integration

Humidity Profiles

11/29/2007

