

Coupled Hydrological Atmospheric Modelling for IP3

Theme 3 working group

IP3 workshop Nov 9-10, WLU, Waterloo, Ontario

Environmental Prediction Framework

MESH: A MEC surface/hydrology configuration designed for regional hydrological modeling

- Designed for a regular grid at a 1-15 km resolution
- Each grid divided into grouped response units (GRU or tiles) to deal with subgrid hetereogeneity

Sub-grid Hetereogeneity (land cover, soil type, slope, aspect, altitude)

A relatively small number of classes are kept, only the % of coverage for each class is kept

MESH: A MEC surface/hydrology configuration designed for regional hydrological modeling

- The tile connector (1D, scalable) redistributes mass and energy between tiles in a grid cell
 - e.g. snow drift
- The grid connector (2D) is responsible for routing runoff
 - can still be parallelized by grouping grid cells by subwatershed

From Measurements to Models

Modelling and parameterization hierarchy. Previous LSS scaling methodology refers to projects that parameterized and evaluated predictions of processes at a point and then applied directly to regional scales. IP3 scaling methodology involves step-wise transfer of upscaled processes to basin-scale parameterizations and then to regional scales

Environnement Environment Canada Canada

Scale matters

Environmement Environment Canada Canada

Advancements

- Establishing MESH domains at the basin scale
 - Partnerships for most research basins have formed.
 - Single Grid version of CLASS for each basin has been set-up by U of W.
 - Soulis and Seglenieks
 - Software Engineering and repository established at HAL lab
 - Davison
 - DDS working with CLASS and MESH
 - Tolson

Calibration of a Land Surface Hydrology Scheme in Arctic Environments

Pablo Dornes¹, Bruce Davison², Alain Pietroniro² Bryan Tolson³, Ric Soulis³, Philip Marsh², and John Pomeroy¹

- 1 Centre for Hydrology, University of Saskatchewan, Saskatoon, SK, Canada
- 2 Environment Canada, Saskatoon, SK, Canada
- 3 University of Waterloo, ON, Canada

Objectives

- To parameterise a LS-Hydrological model, A stepwise procedure is applied:
- Calibration of a LSS in a point mode using a single-objective function (snow water equivalent-SWE). Examination of the effects of including an explicit representation in a LSS of:
 - a) Fully distributed (calibrated)
 - b) Initial conditions,
 - c) Forcing data.
 - d) all

2. Calibration of a LS-Hydrological model using a multi-objective function (streamflow and snow cover area-SCA) by keeping the vegetation parameters calibrated in point 1.

Environnement Environmer Canada Ganada

Landscape Heterogeneity

Modelling strategy LSS

	Parameter	PLT Open tundra	NF Shrub tundra	
	Max. LAI (LAMX)	0.53 (0.5, 2)	2.81 (2, 3)	
The Canadian Land Surface Scheme (CLASS 3.3)	Min. LAI (LAMN)	0.28 (0.5, 3)	0.99 (0.4, 1)	
	LN roughness length (LNZ0) [m]	-4.09 (-4.8, - 3.5)	-2.42 (-3.7, - 1.8)	
Objective function: Snow Water Equivalent	Visible albedo (ALVC)	0.183 (0.02, 0.2)	0.087 (0.03, 0.2)	
Dynamically Dimensioned Search (DDS)	Near-infrared albedo (ALIC)	0.424 (0.2, 0.4)	0.464 (0.3, 0.5)	
global optimisation algorithm (Tolson and Shoemaker WRR 2007) 25 parameters (12 for shrubs, 12 for grass, and 1 for snow-cover depletion SCD) that	Biomass Den. (CMAS) [Kg·m⁻²]	0.11 (0.05, 0.35)	6.13 (6, 10)	
	Min. stomatal resist. (RSMN)	251.5 (50, 300)	51.9 (50, 300)	
govern snowmelt	Coef. stomata resp. to light (QA50) [W·m ⁻²]	46.1 (20, 60)	21.1 (20, 60)	
Validation 2002 and 2004	Coef. stomatal resist. to VP deficit (VPDA)	1.31 (0.2, 1.5)	1.08 (0.2, 1.5)	
 Effects of initial conditions were analysed from extensive field observations whereas forcing data effects were evaluated using the Cold Region Hydrological Model (CRHM) as a prepossessing data for 	Coef. stomatal resist. to VP deficit (VPDB)	0.61 (0.2, 1.5)	0.93 (0.2, 1.5)	
	Coef. stomatal resist. to soil WS (PSGA)	146.7 (50, 150)	93.5 (50, 150)	
	Coef. stomatal resist. to soil WS (PSGB)	4.92 (1-10)	1.09 (1-10)	
CLASS.	Lower snow depth limit for 100% SCA (D100) [m]	0.42 (0.05-0.5)	0.81 (0.05-1)	

Canada

Modelling strategy

CRHM – Short wave correction

Modelling strategy

CLASS – Point mode

SWE - Calibration period - 2003

Canada

SWE - Calibration period - 2003

SWE - Calibration period - 2003

SWE - Validation period - 2002

SWE - Validation period - 2004

Avg. Initial Conditions

Aggregated Forcing data - 2003

Aggregated Forcing data – 2002-2004

Aggregated vs Distributed

Modelling strategy

Transference of parameters

Modelling strategy

LS-Hydrological model

The MESH modelling system Calibration 1996 Objective functions: Streamflow and basin average Snow Cover Area (SCA)

Dynamically Dimensioned Search (DDS) global optimisation algorithm

15 parameters (7 for shrubs, 7 for grass, and 1 for snow-cover depletion, SCD)

Validation 1999

Trail Valley Creek - SCA

Trail Valley Creek - Streamflow

Conclusions

- A regionalization approach for transferring parameters of a physically based LSH model in sub-arctic and arctic environments has been presented.
- This approach was based on a landscape similarity criterion and focused on two aspects.
 - First, model parameters are landcover-based rather than basin-based, and
 - second a step-wise calibration procedure was used to estimate the effective parameters.
- The landcover-based parameters offer an interesting alternative for PUB due to the difficulties in finding basin-based criteria for transferring parameters.
- Distributed and physically based models, landscape-based parameters appear to be a more feasible framework for transferring information between catchments than regionalisation schemes using regression methods based on basin characteristics.
- A special case however, was the inclusion of the SDC parameter in the calibration process at TVC. The main reasons were its poor physical basis and the resulting difficulty in deriving a landscape-base value from observations.

What Next

- Extend Wolf Creek analysis to entire basin
- Examine basin segmentation approaches and combinations of topographic and land-cover GRU's.
- Look at continuous simulation to assess impacts on IC.
 - Tile connectors for redistribution of blowing snow
- Extend analysis to other basins
- Pay attention to IP-1 and IP-2 findings

