Introduction to WATCLASS

Introduction to WATCLASS

Class Landscape Unit (footprint)

WATDRAIN
(lateral processes)
\leftarrow WATFLOOD
(routing)

Introduction to WATCLASS

Class Landscape Unit (footprint)

WATDRAIN
(lateral processes)
WATFLOOD
(routing)
\leftarrow WATCLASS
Tile Approach

Single Plateau Runoff

? Channel Fen runoff

Disturbing Plateau Runoff

Site Distribution of Peat Plateaus

Hydraulic radius $L=2$ * area / perimeter

Transformation of a Random Variable

Step 1B: Adjusting for tile geometry

The effective D is calculated as the ratio between the average diameter (D-bar) and a function of the coefficient of variation (cv ≈ 1.33)

$$
\mathrm{D}_{\text {eff }}=\frac{\overline{\mathrm{D}}}{\left(1+\mathrm{cv}^{2}\right)}=\frac{\overline{\mathrm{D}}}{2.77}
$$

Effective values for drainage density will be higher than those that are measured

Results from 2004-2005 Model

-DDS-optimized parameters -drainage density: $0.43 \mathrm{~km} / \mathrm{km}^{2}$ (HQ: $0.161 \mathrm{~km} / \mathrm{km}^{2}$)
-Soil depth in peat plateaus: 1.13 m

- Soil depth in fens: 0.41 m

