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= Runoff
- Ecosystem Controls
- Transit Time Distributions
- Channel Snow/Ice

" Infiltration
- Parameterization/modelling activities

= HRU Classification
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All HRUs contribute water to the stream
in approximately equal volume.

Much greater deep groundwater flow
than previously reported or anticipated.

Work ongoing to assess seasonal
dominance of HRUs (logistics).

Role of channel ice/snow to be
investigated
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Abstract

Runoff hydrology has a large historical context concerned with the mechanisms
and pathways of how water is transferred to the stream network. Despite this,
there has been relatively little application ol runoft generation theory 1o cold
regions, particularly the expansive trecless environments where tundra vegetation,
permafrost, and organic soils predominate. Here, the hydrological cycle is heavily
influenced by 1) snow storage and release, 2) permafrost and frozen ground that
restricts drainage, and 3) the water holding capacity of organic soils. While
previous research has adapted temperate runoff generation concepts such as
variable source area, transmissivity feedback, and fill-and-spill, there has been
no runoff genaration concept developed explicitly for tundra environments. Here,
we propose an energy-based framework for delineating runoff contributing arcas
for tundra environments. Aerodynamic energy and roughness height control the
end-of-winter snow water equivalent, which varies orders of magnitude across
the landscape. Radiant encrgy in turn controls snowmelt and ground thaw rates.
The combined spatial pattern of aerodynamic and radiant energy contrel flow
pathwmave and the runoft contributing areas of the catchment. which are persistent



Residence Time: time (since entry) that a water molecule has

spent inside a flow system
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(Complex Flow Path Distribution)
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" Lag times need to be adjusted if considering
rainfall versus snowmelt (may want to
consider only melt signatures or rain/melt

separately) “ -
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= Parameter converge does occur (GLUE), yet . el
N-S goodness of fit “mediocre” ~0.6 to 0.7 & ‘..C B 22
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= Off to Aberdeen in February
for advice.












" Evaluate several commonly used infiltration
algorithms using filed measurements at several
organic covered permafrost sites

"|dentify the key parameters/processes in
infiltration simulations at organic covered
permafrost soil.

" Provide guidelines for the implementation of
appropriate infiltration algorithms/parameters
In hydrological and land surface models




Empirical

S ==

analytical

Numerical =)

Gray et al. (1985) SWE based
empirical relation

Zhao and Gray (1999)
parametric relation

Green_Ampt (1911) and
various modifications
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Numerical solvers of Richard’s
equation or coupled heat and
water transfer equations with
water flux as surface boundary

e.g. HYDRUS1D (Sim{inek et
al., 2005), HAWTS (Zhao et
al., 1997) etc.

Mixed
(analytical+
numerical)

ARHYTHM Instantaneous Infiltration model
(Zhang et al., 2000) (TopoFlow)

SHAW infiltration - modified Green_Ampt
Approach for Muti-layered soil (Flerchinger
and Saxton, 1989)




Ground surface temperature (7))

-- Observed surface or near surface temperature

Snow-melt (M,,) and rainfall (R)

--Scotty Creek: daily SWE observation and tipping-bucket rain gauge

--Wolf Creek: daily snow depth with in situ snow density samples and
tipping-bucket rain gauge

Evapotranspiration (E7) --Site calibrated Priestley- Taylor (1972)

Infiltration (ASW,,/ASW,,., : liquid / total soil water changes;

otal *

SW, ... : soil ice melt)
--Scotty Creek: INF,,, = ASW,, - SW,.. +ET (if positive)
--Wolf Creek: INF,, = ASW,,., +ET (if positive)
Runoff
--Scotty Creek: Runoff,,,= R + M,, + SW,,.- ASW,, - ET (if positive)

--Wolf Creek: Runoff.

est

=R+ M, -ASW,,., - ET (if positive)
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- Liquid: TDR

- Total: Gamma

Soil liquid moisture content
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- Liquid: TDR

- Total: None

Soil liquid moisture content
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®»Gray’s empirical estimation gave an acceptable estimation for cumulative end-
season snow-melt infiltration at Wolf Creek, but largely underestimated the infiltration
at Scotty Creek, due to the near saturated soil condition.

®»The parametric method (Zhao et al.) worked at both sites in terms of cumulative end-
season snow-melt infiltration, however it power-shaped curve did not follow the actual
daily infiltration course.

*Pure numerical solutions for infiltration problems require very fine time and soil layer
resolutions (~minute / ~cm), hence very difficult to be applied in field applications.

»Mixed methods with coupled thermal and water transfer equations have the capacity
to simulate the details of infiltration progresses and soil moisture dynamics in. However
appropriate algorithms / parameters have to be identified for organic - covered
permafrost soils.

*Ongoing works for this study:
--more expertise is needed in quantifying the inputs/outs from limited observations
--evaluate the parameterization methods/parameters for thermal and hydraulic
properties of those soils at the two sites.

--Improve the current tested infiltration algorithms for organic -covered permafrost
soil.



*Central probe is a heater
*Outer probes are thermocouples & Reflectometers

‘Total water is unknown, liquid is known, all other k and C values
known
‘Inverse procedure allows determination of ice fraction

*Install vertically and horizontally (to measure infiltration similar to
sapflow)
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