
IMPROVED MESH EFFICIENCY VIA PARALLELIZATION AND CODE OPTIMIZATION

Chris B. Marsh1, 2, Raymond J. Spiteri1,2, and Bruce Davison3

1 Center for Hydrology, Dept. Geography, University of Saskatchewan,2 Simulation Research Laboratory, Dept. Computer Science, University of
Saskatchewan3 NHRC, Saskatoon, Saskatchewan

email:cbm038@mail.usask.ca

INTRODUCTION

Currently, advances in hydrological sciences are based on field data collection, computer
modeling, and analysis of these types of data in order to drawscientific conclusions about
physical processes and to perform what-if scenarios to aid in scientific prediction. How-
ever, as the modeling domains become larger, or the model resolution becomes smaller, ever
greater increases in computational effort are required. Aswell as the finite limits on computer
processing power currently available, other issues, such as round off errors for example, can
present themselves when solving equations numerically. Although current computing power
continues to slowly increase, much greater performance gains can be obtained by taking ad-
vantage of multi-core, multi-processor computer architectures. Completely utilizing modern
computational methods can help to further scientific advancement. In this work, Environ-
ment Canada’s model Modlisation Environmentale Communautaire (MEC)Surface and Hy-
drology (MESH) 1.3 [which is based on the Canadian Land Surface Scheme (CLASS) and
WATFLOOD] was examined via code profiling to determine the slowest portions of code.
Focus was given to determining whether the code could be adapted for parallelism targeting
shared-memory processors (SMP) and whether various code optimizations could be made
to the code structure. These optimizations are important for future work that incorporates
computationally expensive physics into the model. Given that MESH commonly requires
calibrate via multiple model runs, time lost to this stage can hinder the results if the model
information cannot be applied in a timely fashion. By decreasing the run time model users
can quickly iterate over calibration parameters, allowingmore time to be spent on the sci-
ence.

PROFILING

Code profiling was utilized to determine the time spent in each segment of the MESH code
during a typical model run. MESH version 1.3 standalone (to be released Summer/Fall 2009)
was compiled with gfortran version 4.5.0 Ubuntu Linux 8.10 and profiled with Intel V-Tune
version 9.1. Third-level optimization was used (O3). The example basin BWATER was
utilized with a total profiling run time of approximately 50 minutes on a CoreDuo laptop
running at 1.2GHz with 2Gb of RAM and a 5400rpm hard drive. This was selected as a
worst case modelling platform.

Function Percentage of runtime
Main 18%
FLXSURFZ 15%
CLASSS 12%
CLASSG 8%
Total % of MESH 53%

TABLE 1: Profiling results as a percentage of runtime

MAIN is the model driver and entry point of MESH. It is responsiblefor loading configura-
tion files, reading forcing data, writing output data, and running the main computation loop
that iterates over the temporal model domain.
FLZSURFZ estimates a stability parameter, the Richardson Bulk number, and uses this to
estimate a corresponding Monin–Obukhov length that corresponds to the stability parameter.
This is solved using the Newton–Raphson method.
CLASSS “scatters” the 2D arrays into 1D vectors. The rationale behind this is that it is faster
to traverse sequential memory than it is to access “2D” memory.
CLASSG “gathers” the 1D vectors into 2D arrays.

PARALLELIZATION

MESH uses numerous do loops to iterate over the model domain.Many of these loops are
iteration independent, meaning that any given iteration is not dependent upon any other it-
eration. These types of iterations lend themselves very well to parallelism. An Application
Programming Interface (API) OpenMP was used to introduce SMP parallelism into MESH.
OpenMP was chosen because it facilitates fast and flexible SMP parallelization into an exist-
ing code base and it is jointly defined by major hardware and software vendors such as Intel,
Microsoft, and AMD.

CODE OPTIMIZATION

Given CLASSS and CLASSG were the two easiest to target bottlenecks, these were ad-
dressed first. CLASSS was moved to above the main loop in orderto process the input
files, and CLASSG was removed entirely. The few subroutines that required the 2D arrays
produced by CLASSG were rewritten to use the 1D vectors produced by CLASSS. Basic
restructuring is outlined below. Due to the use of these 1D vectors, the do-loops could then
be parallelized via the OpenMP API. In order to capture the speed-up that was a result of
removing CLASSS and CLASSG as well as running on a multi-coreSMP computer, the
three popular Fortran compilers were compared: Intel VF, gfortran, and g95. The g95 com-
piler does not support OpenMP, so g95 was only compared to theother two compilers in
single-threaded mode.

Version Compiler Run Time Number of Threads
1.3.3 ifort 4m8.5s Auto
1.3.3 gfortran 16m2.5s Auto
1.3.3 ifort 4m7.7s 4
1.3.3 gfortran 16m2.7s 4
1.3.3 ifort 4m12.6s 3
1.3.3 gfortran 16m28.0s 3
1.3.3 ifort 4m22.5s 2
1.3.3 gfortran 17m7.2s 2
1.3.3 ifort 5m12.9s 1
1.3.3 gfortran 19m9.6s 1
1.3.3 g95 19m3.8s 1
1.3.2 ifort 8m20.2s 1
1.3.2 gfortran 17m34.6s 1
1.3.2 g95 22m0s 1

Intel ifort speedup
best MESH 1.3.2 run time = 8.3min
best MESH 1.3.3 run time = 5.2min
speedup =

Timeold−Timenew

Timeold
∗ 100

= 8.3−5.2
8.3 ∗ 100% ≈ 37%

Intel ifort speedup (2threads)
MESH 1.3.2 run time = 8.3min
MESH 1.3.3 run time = 4.4min
speedup =

Timeold−Timenew

Timeold
∗ 100

= 8.3−4.4
8.3 ∗ 100% ≈ 47%

TABLE 2: Code speedup and inter-compiler comparison

FIGURE 1: (Left): Compiler performance comparison (Right):Speedup as a function
of threads

CONCLUSIONS AND FUTURE WORK

Preliminary results to consider the impact of parallelism on runtime speed demonstrated
sufficient improvements to suggest that this would be a fruitful approach to apply to other
portions of the code in order to achieve even greater increases in speed. The performance
numbers show that the code is still dominated by the serial sections. It was also observed
that different compilers produced different results, which were greater than what would have
been expected due to round off error. CLASS 3.4 revised was used in isolation from MESH
and run for a year with the example data set. Intel Visual Fortran, gfortran, and g95 were
compared via the relative differenceexperimental−known

known
. This is shown in Figure 2 and

the variables presented are the three soil layer temperatures, averaged to daily values. Fur-
ther investigation into these instabilities is required toproperly quantify their effects on the
output.

FIGURE 2: Relative difference between g95 and gfortran compilers compared to IVF

Instabilities can be mitigated (sometimes fully) by movingto a greater floating point pre-
cision where the accumulated round off error can have less ofan effect on the unstable
algorithms. Figure 3 shows a comparison between double and single precision data types
showing that the instabilities are partially mitigated.

FIGURE 3: Errors as a result of double precision and single precision.


