Calibration and Analysis of the MESH Hydrological Model applied to Reynolds Creek

Angela MacLean* Dr. Bryan Tolson **Dr**. Frank Seglenieks

Waterloo IP3 & WC²N Networks Joint Annual Workshop October 15, 2009 Lake Louise, Alberta

Overview of Research

- 1. Can MESH (v 1.2+) reasonably simulate measured hydrologic data observed in Reynolds Creek Basin, Idaho, USA?
- 2. What methods, decisions, assumptions etc, are necessary for high quality model results?
 - Focus on streamflow and SWE data
 - Reynolds Creek is research basin with high quality, quantity monitoring ... really the best kind of case study a modeller could hope for

Introduction: Case Study

Reynolds Creek:

- Third order sub-watershed of the Snake River basin
- Drainage area 239 km²
- Elevations range from 1101 to 2241 msl
- Mean air temperature ranges from 8.9°C to 4.7°C
- Precipitation in the lower elevations is about 230 mm/yr while the higher regions receive as much as 1100 mm/yr
 Source: USDA Technical Bulletin

Introduction: Case Study

- Reynolds Creek contains 13 streamflow monitoring locations however due to crop irrigation in the lower elevations, the Tollgate weir was the focus of the calibration studies
- The Tollgate subwatershed encompasses the headwaters for Reynolds Creek and receives the most annual precipitation for the watershed

Introduction: Case Study

- Seven snow course sites were established in 1961, and one added in 1970
- A snow pillow was also installed on the site in 1983 to record daily snow water equivalent (SWE)
- The average peak annual SWE can vary from 200 mm/ yr to 750 mm/yr between sites in the headwater areas (Marks et. al, 2000)

Introduction: Model Setup

Reynolds Creek Model Setup

- The distributed model setup used 2 km grid cells (either 1 or 6 GRUs)
- Some meteorological data was distributed using inverse distance weighting
- Solar radiation, temperature, absolute humidity inputs for MESH distributed with more advanced methods ...

Introduction: Model Setup

GRUs for Reynolds Creek - defined based on vegetation cover for each grid cell*

GRU	CLASS code	Area (%)		CLASS Descriptions	Vegetation Description (USDA)		
Number		Reynolds	, Tollgate				
1	2	48%	64%	Broad Leaf	Low Sagebrush Mountain Sagebrush-Snowberry		
2	2	40%	15%	Broad Leaf	Wyoming Sagebrush Wyoming Sagebrush-Bitterbrush		
3	1	2%	0%	Needle Leaf	Greasewood		
4	2	2%	9%	Broad Leaf	Quaking Aspen		
5	1	2%	8%	Needle Leaf	Conifer		
б	3	б%	4%	Crops	Cultivated Other Vegetation		

GRUs Based on Land Cover

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6

Calibration Strategies

Calibration Strategies

Three calibration strategies were implemented for Reynolds Creek:

- 1) Single objective calibration of streamflow at two locations (effectively one location)
- 2) Single objective calibration of SWE at five snow monitoring locations
- 3) Multi-objective optimization of streamflow and SWE (combine 1 and 2)

Note: Each strategy involved automatic calibration (optimization) with DDS algorithm (Tolson & Shoemaker, 2007)

Calibration Results

1) Q Calibration Results

Single objective streamflow calibration

Tollgate subwatershed, 2km 1 GRU model configuration Daily Nash-Sutcliffe = 0.82

1) Q Calibration Results

Single objective streamflow calibration

Daily Nash-Sutcliffe = 0.85

More spatial detail yields approx same quality result despite increase in calibration problem difficulty (31 to 62 parameters)

2) SWE Calibration Results

2) SWE Calibration Results

Single objective SWE calibration – poor results at shaded sites with high deposition

Snow site 174x26, 2km 6 GRU Daily Nash-Sutcliffe = -0.4

Snow site 163x20, 2km 6 GRU Daily Nash-Sutcliffe = 0.3

3) Q+SWE Calibration Results

Multi-objective Calibration

- Streamflow and SWE were optimized simultaneously
- Results are presented for 3 SWE sites and the Tollgate streamflow site only
- equal weight given to fitting streamflow and SWE (average for 3 SWE sites)

3) Q+SWE Calibration Results

model capable of good quality simultaneous SWE and Q predictions

3) Q+SWE Calibration Results

Other Findings

- Performed multiple calibration experiments to ascertain the influence of various factors/decisions on calibration quality
- As a result, "tips" for calibrating MESH:
 - Notably better results if calibration is started from a good initial solution as opposed to a random initial solution
 - Proper delineation of the parameter ranges is required for successful calibration – excessively wide ranges generate very poor results
 - Soil parameters (sand, clay, organic %s) should be calibrated as fixing them to site-specific data values notably degraded calibration results.

(Instead, use measured parameters to more tightly constrain ranges)

Validation

... check whether calibration was meaningful or whether parameter sets were over-fitted to calibration data

Validation Results

Reynolds Creek at Tollgate sub-watershed (6 GRUs) 8 Model crashed unexpectedly Simulated Observed 6 Flow (m³/s) 2 0 Sep-86 Sep-87 Sep-89 Sep-93 Sep-88 Sep-92 Sep-94 Sep-95

MESH v 1.2+ Model Instability

- Instability is preventing any reasonable length validation runs
- Different parameter sets resulted in different errors at different periods in time (during calibration and validation periods) generally during longer model runs
- Typical errors leading to model crashes included:
 - Energy balance error
 - Check water balance error
 - T-solve error, a result of elevated canopy temperatures
- The 2km 6 GRU model configuration experienced highest rate of model crashes during calibration (10%)
- Crashes do not seem to be associated with extreme parameter settings

Conclusions

- MESH, after automatic calibration, predicts Reynolds Creek SWE and Q very nicely
- but ... the model seems to require changes to improve stability (MESH 1.3 could help?)

Future Work

- Overcome/address model instability problems to properly validate results
- Repeating MO streamflow+SWE calibration experiments with only 'sensitive' parameters
- Test the Soulis et al. improvements to MESH soil water budget on Reynolds Creek
- Consider alternate GRU definitions in Reynolds Creek
- Calibrate to other measured data (soil temperature and soil water content) in Reynolds Creek
- Consider similar calibration experiments for other IP3 basins (Wolf Creek completed) ... plus others

QUESTIONS ?

References:

- Hanson, C. L., Marks, D., Van Vactor, S. S. (2000). "Climate Monitoring at the Reynolds Creek Experimental Watershed, Idaho, USA." ARS Technical Bulletin NWRC-2000-6.
- Marks, D., Cooley, K.R., Rovertson, D.C., Winstral, A. (2000). "Snow Monitoring at the Reynolds Creek Experimental Watershed, Idaho, USA." ARS Technical Bulletin NWRC-2000-5.
- Pierson, F.B., Slaughter, C.W., Cram, Z.K. (2000). "Monitoring Discharge and Suspended Sediment, Reynolds Creek Experimental Watershed, Idaho, USA." ARS Technical Bulletin NWRC-2000-8.
- Seyfried, M.S., Harris, C. R., Marks, D., Jacobs, B., (2000a). "A Geographic Database for Watershed Research, Reynolds Creek Experimental Watershed, Idaho, USA." ARS Technical Bulletin NWRC-2000-3.

EXTRAS

MESH predictions compared to Franz et al. (2008) at Tollgate

calibrated SNOW17 + SACSMA (calibrated to more than just our 2 yrs)

(NWS lumped operational forecasting model)

		GRU	NS	APB	R^2
Validation SWE	155x54	5	0.90	15%	0.98
	163x20	1	0.08	30%	0.74
	167x07	1	0.79	21%	0.95
	174x26	4	-0.12	56%	0.84
	Snow Pillow Site	4	0.85	28%	0.96

Reynolds Creek at Tollgate sub-watershed (1 GRU)

Validation: Reynolds Creek at the Outlet and Salmon Creek (1 GRU)

Reynolds Creek at Tollgate sub-watershed (6

Reynolds Creek at Tollgate sub-watershed (6 GRU)

