

IP3 progress at Scotty Creek

Joint Annual Workshop of the IP3 & WC2N Networks, Lake Louise, Alberta, Canada, 14-17 October, 2009

Scotty Creek, Northwest Territories

Hillslope Runoff

unsaturated zone

water table

active layer

frost table

permafrost

organic (saturated) mineral

Shifting Boundaries

Warming Active Layer

Permafrost Melt 1947 - 2000

Quantifying errors in permafrost plateau change from historic remote sensing data

Quantifying errors in permafrost plateau change from historic remote sensing data

Pixel Resolution (m)

Based on linear permafrost loss of ~ 1% per year, and a pixel resolution of 1 m or less, 26 years are required between images to confidently show change (approx. same amount of time between 1970 and 2008 images).

Positive and negative cumulative error (based on a number of criteria) with pixel resolution (left). Despite low resolutions and high error, 1970 and 2000 imagery provide increased confidence in change (below)

Change in permafrost cover

1947 = 72% 1970 = 60% 1977 = 59% 2000 = 52%2008 = 40%

Change in permafrost cover

Basin Runoff Related to Cover Type

Four River Basins (150-1300 km²)

- Scotty Creek
- Birch River
- Blackstone River
- Jean-Marie River

Different percentage of land-cover types

- bogs (storage)
- fens (routing)

Will basin runoff respond to permafrost melt?

Examining CO₂ Gas Flux in Permafrost Terrain (Scotty Creek, NWT)

Conceptual Model of Permafrost Melt

peat plateau

Electrical Resistivity Imaging of Permafrost

Elevation (m)

Electrical Resistivity Imaging of Permafrost

Active layer and permafrost thaw:

590700 590705 590710 590715 590720 590725 590730 590735 590740 590745 590750

Contours = VWC. Surface elev. (m) 269.40 269.30 269.20 -269.10 269.00 -268.90268.80 268.70 -268.60 268.50 -268.40 268.30 268.20

268.10

590700 590705 590710 590715 590720 590725 590730 590735 590740 590745 590750 590755

6798960 -FT depth 6798955 (cm)6798950 6798945 36 6798940 -34 -32 6798935 --30 6798930 --28 -26 6798925 -24 6798920 22 6798915 20

Contour lines represent FT depth

Canopy height (m)

12

-11

-10

-9

-8

-7

-6

-5

-4

-3 -2 -1

^{590700 590705 590710 590715 590720 590725 590730 590735 590740 590745 590750}

Soil Mesocosm Experiments: UWO

Examining the influence of pore size and geometry on peat hydraulic properties using 3-D CT analysis

1.0E-06

1.0E-05

sub- sample	depth (cm)	₩ _T (%)	θ (cm ³ /cm ³)	$ ho_b$ (gr/cm ³)	vP (-)	<i>K</i> (m/s) (Permeameter)
S(I)	0-6	0.95 5	0.385	0.035	H2	4 × 10 ⁻⁶
S(II)	6-12	0.86 3	0.427	0.054	H3	2 × 10 ⁻⁶
S(III)	12-18	0.93	0.402	0.071	H3	5.7 × 10 ⁻⁷
vP= von Post number				Constant pressure head: -40cm		
unsaturated 1	iydraulic condu	ctivity (m s ¹)	0.437	0.115	H5	4.7×10^{-7}

1.0E-04

The large reduction of K_{unsat} with depth, under a constant pressure head, is controlled by air-filled pore hydraulic radius, tortuosity, air-filled pore density and the fractal dimension due to decomposition and compression of the organic matter.

On-going work:

1) Identify the key factors controlling the rates and patterns of preferential thaw leading to permafrost degradation,

- 2) Develop a new model that simulates the permafrost response to climate warming and human disturbance,
- 3) Develop conceptual & mathematical models of key hydrological processes, and
- 4) Couple the hydrological and permafrost models to predict the spatial distribution of permafrost, and the river flow regime under scenarios of climate warming and human disturbance.

Ground surface energetics and subsurface thermal regime of permafrost plateau and a peat bog

November, 2005