Improved Parameterisations for Organic-covered Permafrost Soil in Land Surface and Hydrological Models

Yinsuo Zhang¹, Sean Carey¹, William Quinton², Ric Janowicz³ and others

¹ Carleton University, Ottawa, Ontario
 ² Wilfrid Laurier University, Waterloo, Ontario
 ³ Yukon Territorial Government, Whitehorse, Yukon Territory

Improved Parameterisations for Organic-covered Permafrost Soil in Land Surface and Hydrological Models

• Organic soil and thaw/freeze are two major headaches in LSMs and HMs, creating challenges in both energy and water simulations.

• Large diversity exists in the algorithms and parameterisations employed in current LSMs and HMs.

• Very little evaluation/validation using data from cold regions

• Review algorithms and parameterisations currently employed in several key processes of LSMs and HMs.

• Select commonly used algorithms and parametrisations for comparison.

• Collect and compile datasets for model calibration and evaluation (IP3 sites)

• Evaluate selected algorithms and parametrisations using common datasets

• Employ improved algorithms and parameterizations in operational LSMs and HMs (on going)

Parameterisations for Organic-covered Permafrost Soils Processes and Algorithms Examined

Thaw/Freez	
 ATIA TDSA HMSA FD-DECP FD-AHCP 	ATIA TDSA HMSA FD-DECP FD-AHCP
Infiltratior	GA-SHAW
▶GA-SHAW	ML-CLAS
▶ML-CLASS	IT-TOPO
▶IT-TOPO	GRAY-IN
►GRAY-IN	
	ZHAO-IN

Abbreviations

ΑΤΙΑ	Accumulated Thermal Index Algorithm
TDSA	Two Directional Stefan Algorithm
HMSA	Hayashi's Modified Stefan Algorithm
FD-DECP	Finite difference numerical scheme with the Decoupled Energy Conservation Parameterization
FD-AHCP	Finite difference numerical scheme with the Apparent Heat Capacity Parameterization
GA-SHAW	Modified Green and Ampt algorithm for non-uniform soils
ML-CLASS	Modified Mein and Larson algorithm for non-uniform soils
IT-TOPO	Instantaneous infiltration algorithm in Topoflow
GRAY-IN	Gray's empirical infiltration algorithm
ZHAO-IN	Zhao and Gray's parametric infiltration algorithm

Soils Parameterisations for Organic-covered Permafrost Soils Parameterisations Examined

Soil thermal conductivity

▶Complete-Johansen

Common-Johansen

De Vries's Method

Soil hydraulic conductivity and retention curves

► Clapp and Hornberger (CH-Para)

Brooks and Corey (BC-Para)

▶van Genuchten (VG-Para)

Unfrozen water content

Power function (UFW-PF)

- Segmented linear function (UFW-SL)
- Water potential-freezing point

depression function (UFW-WP)

Ice impedance

factors

Exponential function (EP-Ice)

- ► Squared function (SQ-Ice)
- ►Linear function (LN-Ice)
- ▶None

Parameterisations for Organic-covered Permafrost Soils Tootima Cito

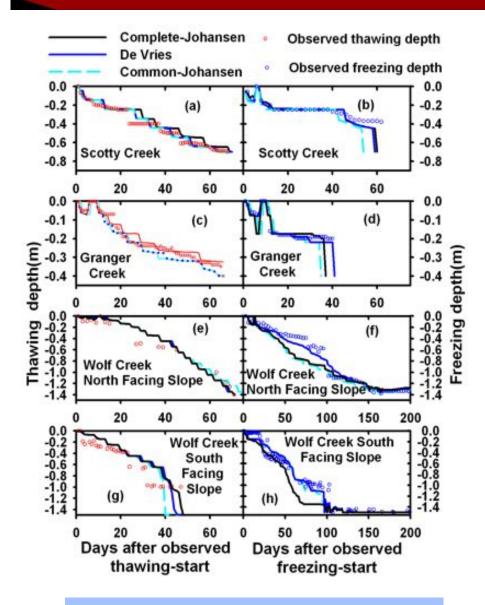
Testing Sites

Scotty Creek Peat Plateau 61°18'N, 121°18'W, 280 m Wolf Creek Forest Site 60°36'N; 134°57'W, 750 m

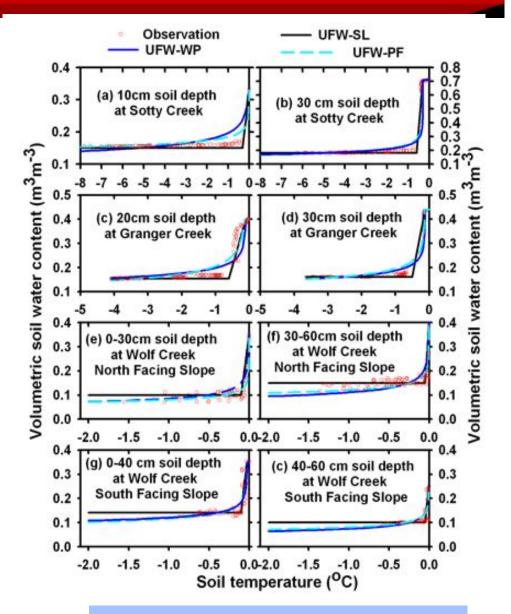
Wolf Creek Alpine Site 60°34'N; 134°09'W, 1615 m

Organic layer Depth: ~0.03 m Permafrost Table: >0.2 m

Granger Creek North Facing Slope 60°33'N, 135°11'W, 1338 m Wolf Creek North Facing Slope 61°31'N, 135°31'W, 1175 m

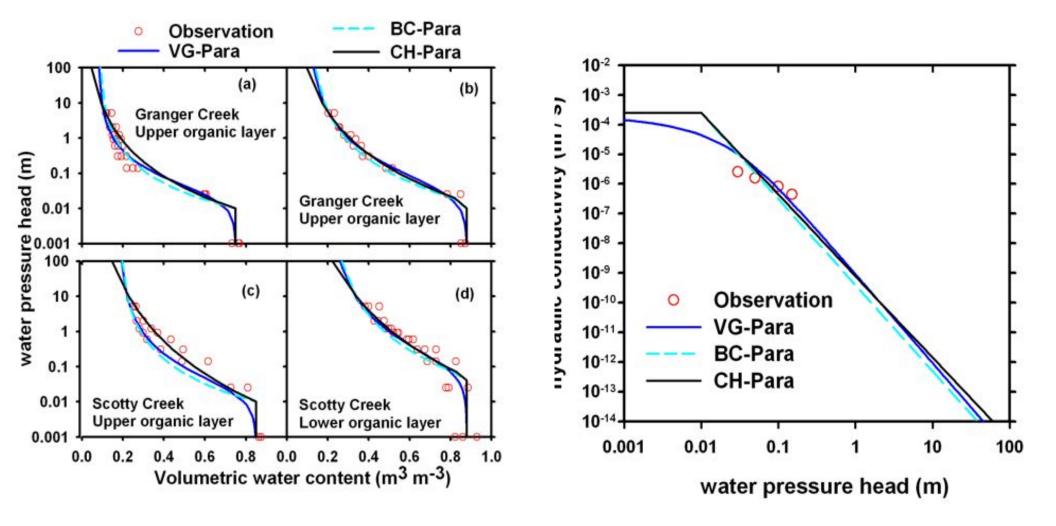

Wolf Creek South Facing Slope 61°18'N, 121°18'W, 280 m

Organic layer Depth: -0.35 m Permafrost Table: >0.4 m



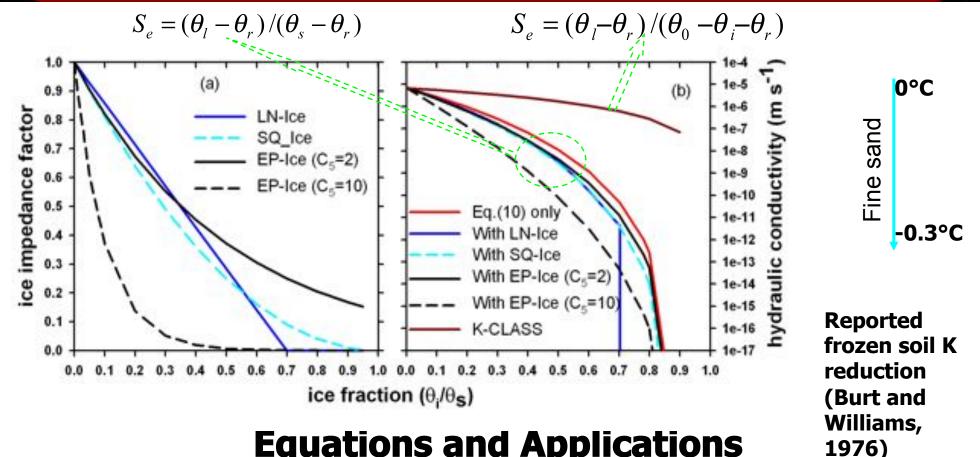
Organic layer Depth: 0.0 m Permafrost Table: N.A.

Results-thermal conductivity and unfrozen water content



Comparison of three thermal conductivity parameterisations

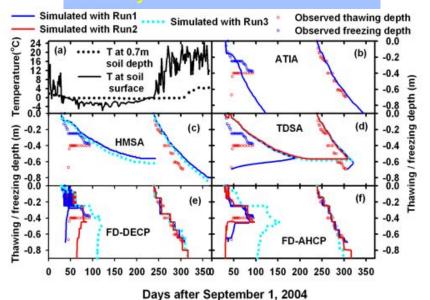
Comparison of three unfrozen water parameterisations


Results-soil hydraulic property parameterisations

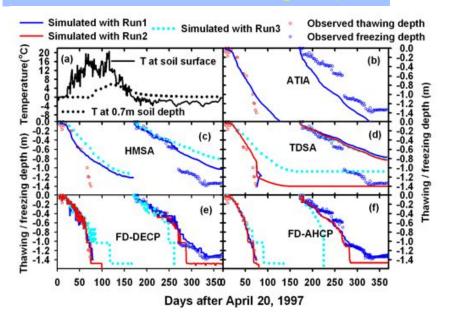
Comparison of three parameterisations for soil water retention curves

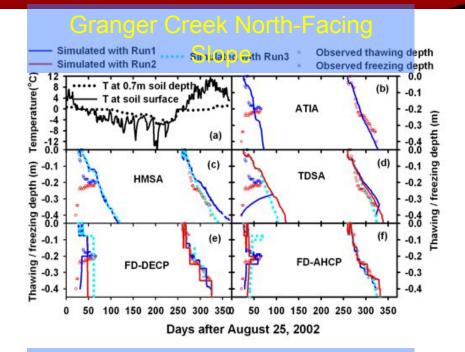
Comparison of three parameterisations for soil hydraulic conductivity

Results-ice impedance to hydraulic conductivity

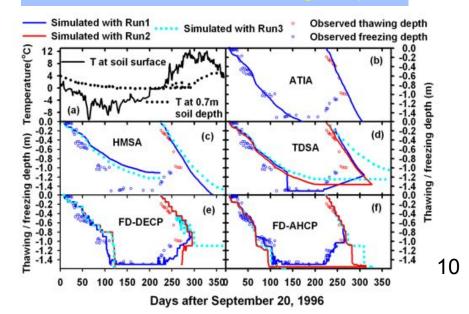

Equations and Applications

<i>K-ψ</i> relation (Eq. 10)	$K = K_s S_e^{2/\lambda + 3} = K_s (\psi / \psi_0)^{-(2+3\lambda)}$	CLASS;SHAW
EP-Ice	$f_{imp,1} = 10^{-C_5 \theta_i}$	CHRM
SQ-Ice	$f_{imp,2} = (1.0 - \theta_i / \theta_s)^2$	CLASS
LN-Ice	$f_{imp,3} = \begin{cases} (\theta_0 - \theta_i - 0.13) / (\theta_0 - 0.13) & \theta_0 - \theta_i > 0.13 \\ 0 & \theta_0 - \theta_i < 0.13 \end{cases}$	SHAW
	$\int_{imp,3}^{J} = \begin{cases} 0 & \theta_0 - \theta_i \le 0.13 \end{cases}$	

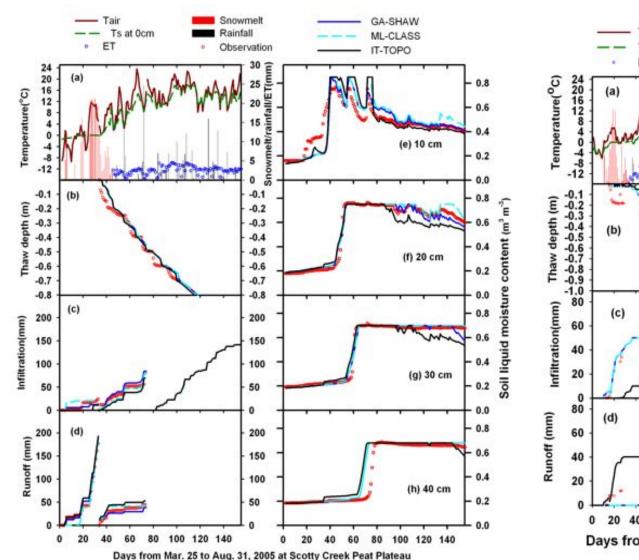

9

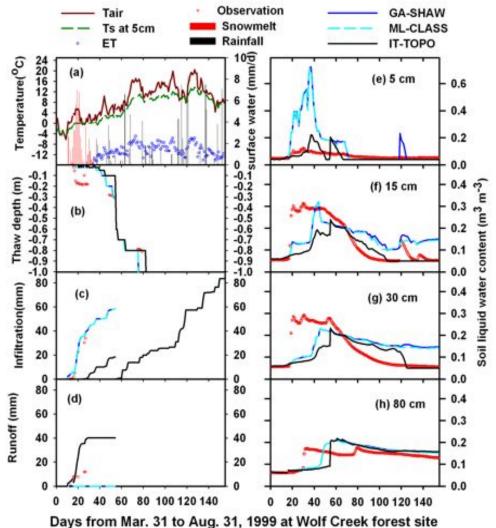

Parameterisations for Organic-covered Permafrost Soils **Results-**ground thaw/freeze algorithms

Scotty Creek Peat Plateau

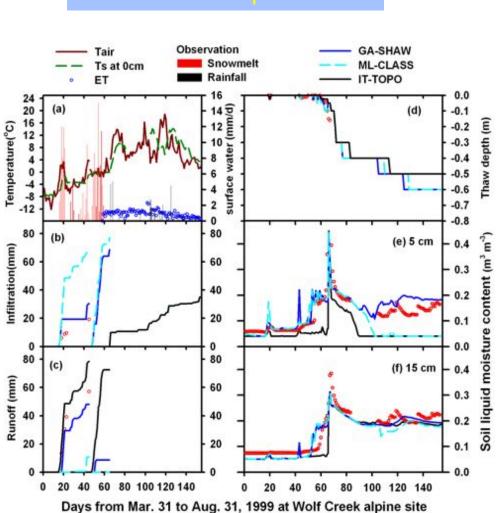


Wolf Creek North-Facing Slope





Results-surface water infiltration algorithms (I)


Scotty Creek Peat Plateau

Wolf Creek Forest Site

Results-surface water infiltration algorithms (II)

Comparisons of infiltration (mm) by observation and simulations during three ground thawing

		· · · · · · · · · · · · · · · · · · ·		
Site	Method	tages n	Thawing	Thawed
ek	Observation	24.0	80.0	
Cre	GRAY-IN	16.8		
ţ	ZHAO-IN	44.8		
Scotty Creek	GA-SHAW	14.1	84.0	170.0
Ň	ML-CLASS	23.0	78.0	170.0
e	IT-TOPO	11.2	69.6	170.0
Sit	Observation	-	>33.8	-
est	GRAY-IN	38.8		\bigwedge
	ZHAO-IN	10.1	41.0	
WC Forest	GA-SHAW	4.5	59.8	83.5
1	ML-CLASS	4.5	59.8	83.5
e	IT-TOPO	0	18.2	83.5
Si	Observation	19.1		
ine	GRAY-IN	49.6		• <u></u>
WC Alpine	ZHAO-IN	29.7	7.7	
2	GA-SHAW	30.5	68.7	34.9
\$	ML-CLASS	67.9	77.3	•34.9

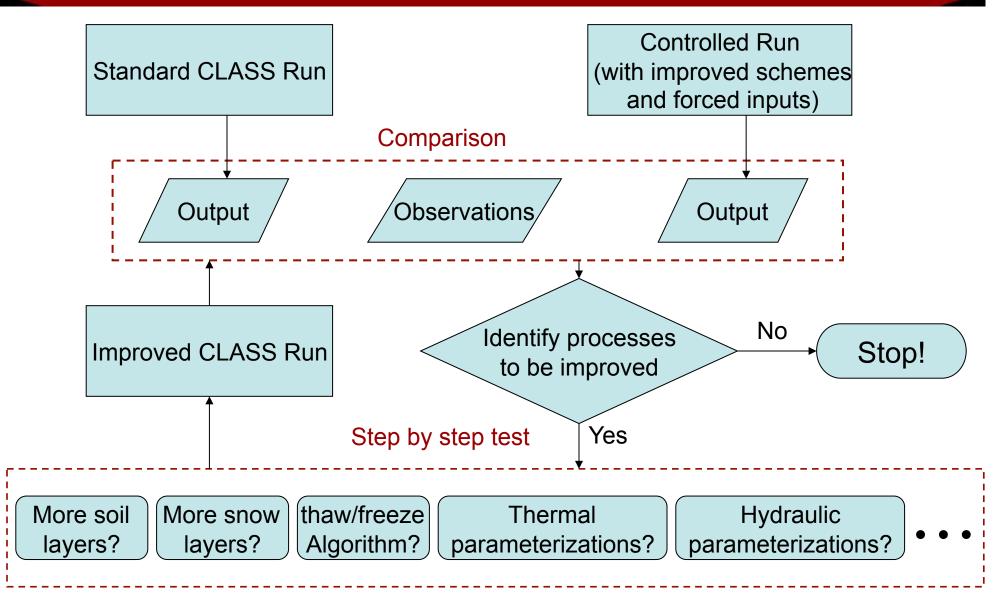
• All the empirical and semi-empirical algorithms are subject to site specific parameter calibration, thus are not suitable for LSMs and HMs that normally operate across various site conditions.

• Numerical models with an apparent heat capacity treatment gives the most accurate thaw/freeze simulation, yet requires:

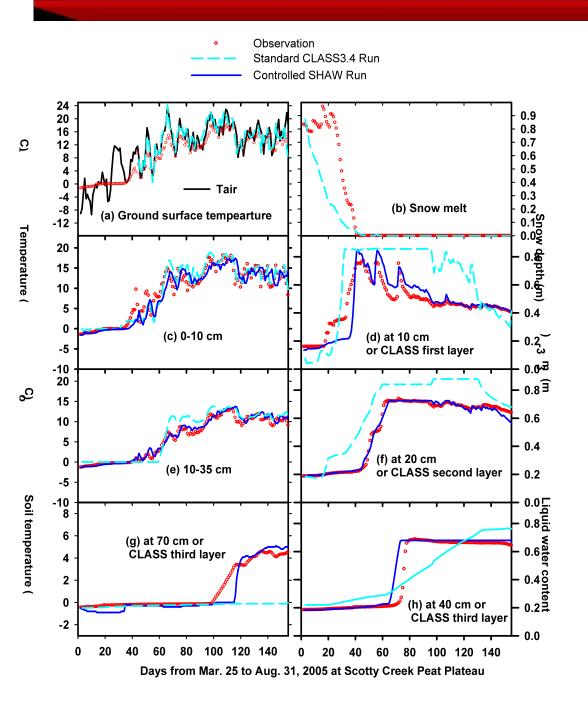
- -- appropriate time and spatial resolutions.
- -- accurate ground surface temperature inputs.

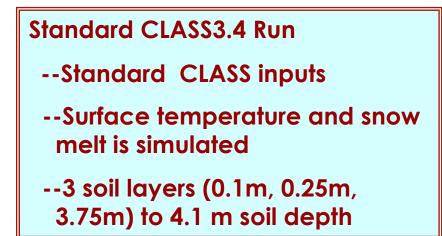
 Both analytical algorithms modified for non-uniform soil from Green-Ampt and Mein-Larson are recommended for simulation in infiltration into organic covered permafrost soils, yet requires:

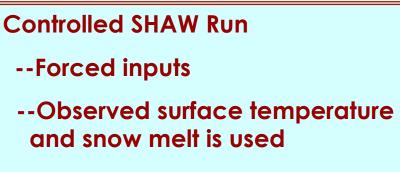
-- appropriate parameterisation of soil thermal and hydraulic properties


-- accurate representation of ground thawing depth

• For unfrozen water parameterisation, the segmented linear function is the easiest to be parameterised, while the water potential-freezing point depression relation is the best choice for coupled numerical simulation of soil thermal and moisture transfers. • For soil thermal conductivity parameterization, the De Vries' method is recommended.


• For soil hydraulic parameterization, van Genuchten's is applicable over all soil moisture ranges, but its application was restricted by parameter availability. Brooks-Corey and Clapp-Hornberger's have better parameter availability, yet special treatment must be arranged for saturated, extremely dry or frozen soil conditions.


• The various ice impedance factors currently employed in many LSMs and HMs may not be necessary once the water potential, soil temperature and hydraulic conductivity relationships were applied.


Preliminary investigations in implementation of the improved algorithms/parameterisations into CLASS/MESH

MESH Preliminary investigations

--16 soil layers to 5 m soil depth

MESH Some preliminary results and problems faced

• The CLASS thermal simulation were good for upper two layers, but the thermal responses below 0.35m were much delayed. More and finer soil layers suggested.

• More snow layers might be needed in order to improve snowmelt simulation, which is crucial for soil water simulations.

• Major problems encountered in running CLASS3.4 were frequent unusual stops of model run due to failures in canopy or ground surface energy solvers: "TSOLVC" and "TSOLVE", more expertise in setting the initial file "*.ini" is required.

References and Acknowledgement

More information could be found in the following publications:

--Zhang, Y., Carey, S. K., Quinton, W. L., Janowicz, J. R. and Flerchinger, G. N., 2009. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils, Hydrology and Earth System Sciences Discussions, 6, 5705-5752.

-- Zhang Y., Carey, S. and Quinton, W., 2008. Evaluation of the algorithms and parameterizations for ground thawing and freezing simulation in permafrost regions. Journal of Geophysical Research, 113, D17116, doi: 10.1029/2007JD009343.

-- Quinton, W. L., Bemrose, R. K., Zhang, Y. and Carey, S. K., 2009. The influence of spatial variability in snowmelt and active layer thaw on hillslope drainage for an Alpine tundra hillslope, Hydrological Processes, DOI: 10.1002/hyp. 7327.

Please also see the poster in this workshop entitled

"Parameterizations of organic-covered permafrost soils in land surface and hydrological models"

• We acknowledge the following who contributed to this work with data, models and ideas (alphabetically): C.R. Burn, B. Davison, G.N. Flerchinger, L.E. Goodrich, M. Hayashi, J.R. Janowicz, M. MacDonald, M. Mollinga, C. Marsh, J. Pomeroy, F. Seglenieks, R. Soulis, W.L. Quinton, D. Verseghy, M-K. Woo, N. Wright, S. Yi and Yu Zhang 19