Hydrological Storage and Pathways in Alpine Headwaters: Lake O'Hara Study Update

Jaime Hood, Greg Langston, Danika Muir, Chris Donnelly, Alastair McClymont, M. Hayashi Dept. of Geoscience, Univ. of Calgary

Unanswered Questions in Alpine Hydrology

- Where is groundwater stored?
- How large is groundwater storage?
 10 mm? 100 mm?
- How long is groundwater stored? days? weeks? months?
- How can these be represented in basin hydrology models?

Opabin Sub-Basin in Lake O'Hara Basin

Annual Snow Survey, April 16-21

Snow Water Equivalent (SWE) Distribution

2075 2125 2175 2225 2275 2325 elev. (m)

Remote Survey of Steep Slopes Laser Range Finder: Poor man's LiDAR

"Model" the depth distribution using Laser data. Measure the depth using conventional probes.

Results

Average measured snow depth = 1.74m RMS error of modeled vs measured = 0.27m

SW Radiation: ArcGIS Solar Radiation Tool

Validation of SW Radiation: Babylon Site

Groundwater in Proglacial Moraine

Opabin Glacier

GW outlet

Emerging Conceptual Model

- Dry moraine material (MM)
- Debris covered massive ice (MI)
- Degrading Permafrost (PF)
 - Saturated Moraine Material (GW)
 - Bedrock (BR)
 - Wet Moraine Material (WMM)

Tracer Dilution Experiment, Aug. 2008

- 44 kg of NaCl released
- Concurrent energy-balance study

Estimation of Hydraulic Conductivity

- Use a 3D groundwater flow model, MODFLOW.
- Simulate the steady-state exchange of groundwater with the pond.
- Inverse determination of best-fit conductivity.

 $K_{sat} = 2 \times 10^{-4} \text{ m/s}$

Groundwater Storage and Flow in

Gauging Station

Tracer tests

Babylon Creek

Groundwater Storage and Flow in

Preliminary Analysis

- Storage time in the talus is in the order of < 1 week.
- High hydraulic conductivity (10⁻² m/s) for loose sediments.
- Moderate conductivity (10⁻⁵ m/s) for a second "reservoir" – fractured bedrock??

Coupled Surface-Groundwater Model

Daily snowmelt

Hydrologic landscape units

Distribute water inputs.
Couple with GW flow model.
Simulate basin outflow.
HBV–MODFLOW for this example.

Acknowledgements

People

Larry Bentley, Jackie Randell, Nathan Green, Josh Ouellet, Simon Martin, Kate Forbes, and many more

Funding Support

Biogeoscience Institute (U of Calgary) Alberta Ingenuity Centre for Water Research Canadian Foundation for Climate and Atmospheric Science (IP3 Network) Environment Canada

Logistical Support Lake O'Hara Lodge Parks Canada