Publication 2021: Assessing the Hydrological and Geomorphic Behaviour of a Landscape Evolution Model within a Limits-of-Acceptability Uncertainty Analysis Framework
Related Information
Publication
Abstract
Download
Computed Information
Section 1: Publication
Authorship
Wong, J., Freer, J. E., Bates, P.J., Warburton, J., and Coulthard, J.
Title
Assessing the Hydrological and Geomorphic Behaviour of a Landscape Evolution Model within a Limits-of-Acceptability Uncertainty Analysis Framework
Year
2021
Publication Outlet
Earth Surface Processes and Landforms
DOI
Citation
Wong, J., Freer, J. E., Bates, P.J., Warburton, J., and Coulthard, J. (In Press). Assessing the Hydrological and Geomorphic Behaviour of a Landscape Evolution Model within a Limits-of-Acceptability Uncertainty Analysis Framework, Earth Surface Processes and Landforms.
https://doi.org/10.1002/esp.5140
Additional Information
Core Modelling & Forecasting Team
Section 2: Abstract
Abstract
Landscape evolution models (LEMs) have the capability to characterize key aspects of geomorphological and hydrological processes. However, their usefulness is hindered by model equifinality and paucity of available calibration data. Estimating uncertainty in the parameter space and resultant model predictions is rarely achieved as this is computationally intensive and the uncertainties inherent in the observed data are large. Therefore, a limits-of-acceptability (LoA) uncertainty analysis approach was adopted in this study to assess the value of uncertain hydrological and geomorphic data. These were used to constrain simulations of catchment responses and to explore the parameter uncertainty in model predictions. We applied this approach to the River Derwent and Cocker catchments in the UK using a LEM CAESAR-Lisflood. Results show that the model was generally able to produce behavioural simulations within the uncertainty limits of the streamflow. Reliability metrics ranged from 24.4% to 41.2% and captured the high-magnitude low-frequency sediment events. Since different sets of behavioural simulations were found across different parts of the catchment, evaluating LEM performance, in quantifying and assessing both at-a-point behaviour and spatial catchment response, remains a challenge. Our results show that evaluating LEMs within uncertainty analyses framework while taking into account the varying quality of different observations constrains behavioural simulations and parameter distributions and is a step towards a full-ensemble uncertainty evaluation of such models. We believe that this approach will have benefits for reflecting uncertainties in flooding events where channel morphological changes are occurring and various diverse (and yet often sparse) data have been collected over such events.
Section 3: Download
Download Links
Section 4: Computed Information
AZLine
WONG-J-FREER-J-E-BATES-PJ-WARBURTON-J-AND-COULTHARD-J-IN-PRESS-ASSESSING-THE-HYDROLOGICAL-AND-GEOMORPHIC-BEHAVIOUR-OF-A-LANDSCAPE-EVOLUTION-MODEL-WITHIN-A-LIMITS-OF-ACCEPTABILITY-UNCERTAINTY-ANALYSIS-FRAMEWORK-EARTH-SURFACE-PROCESSES-AND-LANDFORMS-HTTPSDOIORG101002ESP5140
AZHash
2e713d21169233bb122c3310f6aadb9d