
Related items loading ...
Section 1: Publication
Publication Type
Journal Article
Authorship
Gauch Martin, Kratzert Frederik, Klotz Daniel, Nearing Grey, Lin Jimmy, and Hochreiter Sepp
Title
Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network
Year
2021
Publication Outlet
Hydrology and Earth System Sciences, 25(4):2045-2062
DOI
ISBN
ISSN
Citation
Gauch Martin, Kratzert Frederik, Klotz Daniel, Nearing Grey, Lin Jimmy, and Hochreiter Sepp. Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. Hydrology and Earth System Sciences, 25(4):2045-2062, 2021.
Abstract
Long Short-Term Memory (LSTM) networks have been applied to daily discharge prediction with remarkable success. Many practical applications, however, require predictions at more granular timescales. For instance, accurate prediction of short but extreme flood peaks can make a lifesaving difference, yet such peaks may escape the coarse temporal resolution of daily predictions. Naively training an LSTM on hourly data, however, entails very long input sequences that make learning difficult and computationally expensive. In this study, we propose two multi-timescale LSTM (MTS-LSTM) architectures that jointly predict multiple timescales within one model, as they process long-past inputs at a different temporal resolution than more recent inputs. In a benchmark on 516 basins across the continental United States, these models achieved significantly higher Nash–Sutcliffe efficiency (NSE) values than the US National Water Model. Compared to naive prediction with distinct LSTMs per timescale, the multi-timescale architectures are computationally more efficient with no loss in accuracy. Beyond prediction quality, the multi-timescale LSTM can process different input variables at different timescales, which is especially relevant to operational applications where the lead time of meteorological forcings depends on their temporal resolution.
Plain Language Summary
Section 2: Additional Information
Program Affiliations
Project Affiliations
Submitters
Publication Stage
Published
Theme
Presentation Format
Additional Information
Computer Science Core Team, Refereed Publications