
Related items loading ...
Section 1: Publication
Publication Type
Thesis
Authorship
Telford, J.
Title
Using paleolimnology to establish baseline conditions for metal contaminants in advance of proposed mining to inform a northern community-led aquatic monitoring program, Tl cho Lands, Northwest Territories, Canada
Year
2019
Publication Outlet
DOI
ISBN
ISSN
Citation
Telford, J. (2019). Using paleolimnology to establish baseline conditions for metal contaminants in advance of proposed mining to inform a northern community-led aquatic monitoring program, Tl cho Lands, Northwest Territories, Canada
https://scholars.wlu.ca/etd/2134
Abstract
The Marian Watershed Stewardship Program (MWSP), a community-driven aquatic ecosystem monitoring program, was developed by the Tłı̨chǫ Government to address concerns regarding the cumulative impacts of multiple potential stressors. In particular, the MWSP aims to develop methods that will be effective for detecting potential pollution from the proposed cobalt-gold-copper-bismuth NICO mine within Tłı̨chǫ Lands. In collaboration with the MWSP, paleolimnological methods and geochemical normalization are used to establish pre-mine baselines of lake sediment metals concentrations in the Marian River watershed prior to mine development. This baseline framework can be used to assess for pollution from surficial sediment once the mine becomes operational. Stratigraphic sediment metal concentration results from four lakes are normalized to lithogenic and biogenic elements (Al, Ti, OM, Corg). The application of normalizing techniques to metals within the stratigraphic record aims to account for natural variation as a result of biogeochemical and physical processes that may affect sediment metals concentrations. Application of this method results in a set of lake- and metal-specific baselines established for four lakes. Results show metal concentrations are substantially higher in lakes on or adjacent to the ore body compared to lakes located in the surrounding granitic bedrock terrane. Temporal variations in the concentrations of many metals of concern are small, which provide values that can effectively serve as baselines for ongoing monitoring. An exception is arsenic, a metalloid of major concern, which increases variably in the latter half of the 20th century. There are multiple possible explanations for this trend, including far-field atmospheric emissions, increase in erosion of arsenic-bearing sources in the lake catchments, and/or post-depositional diagenetic mobilization in the lake sediment profile. Notably, increases in arsenic concentrations also occur in the early part of the past millennium likely indicating the potential for variation in the catchment-derived supply of arsenic to these lakes. Additional studies are required to further characterize processes that cause arsenic variations in these lake sediment records. Variation in sediment metals concentrations on both temporal and spatial scales in this region demonstrate the need for lake-specific baselines for accurate interpretation of contemporary sediment monitoring data. This paleolimnological approach may be may be expanded to other lakes in the region for additional monitoring. This unique opportunity allowed for the development of a well-informed and robust monitoring program, which applies a scientific approach to meet the needs of a northern community initiative.
Plain Language Summary
Section 2: Additional Information
Program Affiliations
Project Affiliations
Submitters
Publication Stage
N/A
Theme
Presentation Format
Additional Information
Masters, i?cho Government, Wilfrid Laurier University, Sub-Arctic Metal Mobility Study